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Content（内容）

Perturbation
（扰动）

Field error
（场误差）

Orbit distortion
（轨道扭曲）

Tune shift
（频移）

Adiabatic damping
（绝热阻尼）

Linear coupling
（线性耦合）

Nonlinear resonance
（非线性共振）

Chromatic effect
（色散效应）

Dispersion function
（色散函数）

Calculation of dispersion function 
（色散函数的计算）

Dispersion suppressor
（色散的消除）

Momentum compaction
（动量的压缩）

Achromat cell
（消色散单元）

Chromaticity
（色品）
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Transverse Motion
（横向运动）
Equation of motion
（运动方程）
Matrix formalism
（矩阵形式）
Symplecticity
（辛）
Courant-Snyder formalism
（克朗特-施耐德形式）
Normal form
（规范形式）



Coordinate system（坐标系）
See the following figure, the design trajectory has a local

curvature ρ, the path length along the trajectory is s. We

define three right-handed unit vectors ( ො𝑥, ො𝑦 , Ƹ𝑠) .

The position of a particle in this coordinate system is 

𝑅 = 𝑟 ො𝑥 + 𝑦 ො𝑦, where r=ρ+x, x and y are the functions

of s. To describe the transverse motion of the particle,

we need two more quantities xˊ(s)=dx(s)/ds and 

yˊ(s)=dy(s)/ds. The 4-D space (x, xˊ,y, 𝑦ˊ) constitutes 

the transverse phase space.

The bending curvature ρ>>|x|  ( |x| less than aperture 

of vacuum chamber, far less than its length)

Note the particle motion on a circle, velocity will be  
𝑑𝑠

𝑑𝑡
= 𝑣𝑠

ρ
𝑟
= 𝑣𝑠

ρ
ρ+𝑥

, it is different from 𝑣𝑠

ρ

The deep black circle is not correct, in most 
cases, it is only valid in a short arc, because ρ
is varied with s
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Equation of motion(运动方程)

Classical dynamics in magnetic field
𝑑 റ𝑝

𝑑t
=q റ𝑣× B (1)

റ𝑝 is the momentum of particle, q is the charge of particle, 

റ𝑣 is the velocity vector, B is the strength vector of magnetic field

റ𝑝 = 𝑝𝑥,𝑝𝑦 ,𝑝𝑠 , റ𝑣 ={𝑣𝑥 ,𝑣𝑦 ,𝑣𝑠}, 𝐵={𝐵𝑥,𝐵𝑦,𝐵𝑠},for magnet except 
solenoid 𝐵𝑠=0

Substitute in eq. (1), 
𝑑 റ𝑝

𝑑t
=-q 𝑣𝑠 𝐵𝑦 ො𝑥 +q 𝑣𝑠 𝐵𝑥 ො𝑦 + q(𝑣𝑥 𝐵𝑦- 𝑣𝑦 𝐵𝑥) Ƹ𝑠

In most accelerator, 𝑣𝑥 , 𝑣𝑦<< 𝑣𝑠 (Comparing the length of 
accelerator with aperture of vacuum chamber，the orbit trajectory 
angle is far less than one rad), so
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𝑑 റ𝑝

𝑑t
=-q 𝑣𝑠 𝐵𝑦 ො𝑥 +q 𝑣𝑠 𝐵𝑥 ො𝑦 (2)

In a magnet, the energy of a particle does not change(in strictly, 
due to synchrotron radiation, the energy will decrease a very small 
amount, it is about several MeV or less, much less than the beam 
energy. For CEPC or FCC(100GeV or higher machine), the radiation 
effect must be take into account.)
𝑑 റ𝑝

𝑑t
= 

𝑑

𝑑t
mγ ሶ

𝑅 = mγ ሷ
𝑅 = mγ( ሷr ො𝑥 + 2 ሶr ሶ𝜃 Ƹ𝑠+r ሷ𝜃 Ƹ𝑠-r ሶ𝜃2 ො𝑥 + ሷ𝑦 ො𝑦)

Compear with eq.(2), we have

x-component:  ሷr-r ሶ𝜃2=-
1

mγ q𝑣𝑠𝐵𝑦

y-component:  ሷ𝑦 = 
1

mγ q𝑣𝑠𝐵𝑦

s-component will be handed latter. (2 ሶr ሶ𝜃+r ሷ𝜃=0)

For high energy accelerator, γ ≫ 1, 𝑣𝑠 nearly speed of light c and 𝑣𝑠
≈r ሶ𝜃
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In a piecewise constant bending magnet，the strength of the magnet is By0, the 
momentum of the particle is

𝑃=mγ𝑣，
1

ρ
=

𝑞By0

𝑃
,or ρ= 

𝑃

𝑞By0

So, we have(note r=ρ+x)

ሶr=
𝑣𝑠ρ

ρ+𝑥

𝑑𝑟

𝑑𝑠
= 

𝑣𝑠ρ

ρ+𝑥

𝑑𝑥

𝑑𝑠

ሷ𝑟=
𝑑

𝑑𝑠
(

𝑣𝑠ρ

ρ+𝑥

𝑑𝑥

𝑑𝑠
)=-

𝑣𝑠ρ

(ρ+𝑥)2(
𝑑𝑥

𝑑𝑠
)2 𝑑s

𝑑t
+ (

𝑣𝑠ρ

ρ+𝑥
)2 𝑑2𝑥

𝑑𝑠2= (
𝑣𝑠ρ

ρ+𝑥
)2[-

1

ρ+𝑥
(
𝑑𝑥

𝑑𝑠
)2)+

𝑑2𝑥

𝑑𝑠2]≈(
𝑣𝑠ρ

ρ+𝑥
)2 𝑑2𝑥

𝑑𝑠2

ሷ𝑦 ≈(
𝑣𝑠ρ

ρ+𝑥
)2 𝑑2𝑦

𝑑𝑠2

Simplify it, one can have

(
ρ

ρ+𝑥
)2 𝑑2𝑥

𝑑𝑠2-
1

ρ+x=-
q𝐵𝑦

mγ𝑣𝑠
（3）

Here we suppose the particle moves on the horizontal plane.
In case with magnetic field error 𝛿𝑦 = 𝐵𝑦-𝐵𝑦0, 𝛿𝑥 = 𝐵𝑥 the equations of motion 
become

x-component:      
𝑑2𝑥

𝑑𝑠2 +
𝑥

ρ2 ≈ -
q(𝐵𝑦−𝐵𝑦0)

𝑃

y-component:      
𝑑2𝑦

𝑑𝑠2 ≈  
q𝐵𝑥

𝑃
（4）
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Combined-function magnet（组合磁铁）

Last section, the magnet is a pure function: bending, now we introduce a new 
magnet with focusing G

𝐵=𝐵𝑦0 ො𝑦 + G(y ො𝑥 + 𝑥 ො𝑦)

where G=
𝜕By

𝜕x
= 

𝜕Bx

𝜕y
， the equation of motion become

𝑑2𝑥

𝑑𝑠2 + (
𝐺

𝐵ρ +
1

ρ2) 𝑥=0, 
𝑑2𝑦

𝑑𝑠2 +
𝐺

𝐵ρ 𝑦=0, 𝐵ρ= 
𝑃

q
 is the magnetic rigidity

The transverse equation of motion can be simplified as Hill equation

u″+K(s)u=0 and 𝐾𝑥 =
1

𝐵ρ
𝜕By

𝜕x
+ 

1

ρ2= 
1

𝐵ρ 𝐺+
1

ρ2, 𝐾𝑦 = −
1

𝐵ρ
𝜕B𝑥

𝜕𝑦
= -

1

𝐵ρ 𝐺

If G=0, the magnet is a pure bending magnet.
For a pure quadrupole, dipole strength 𝐵 → 0, 𝜌 → ∞, 𝐵𝜌 has no meaning, but 
it stands for the particle momentum 𝑃

obtain the following relations for the trajectory inside the magnet:

x(s) = x0 · cos |K| s p sin |K| s ,
|K|

(18)
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Weak focusing ring（弱聚焦环）

The up and down pole faces of the bending magnet are not

parallel，it means
𝜕By

𝜕x
≠ 0, let n= -

ρ
𝐵

𝜕By

𝜕x
, 0<n <1

If the ring is made of a single uniform combined-function magnet,
x and y satisfy the following equation

x″+
1−𝑛

ρ2 x=0, 𝑦″+
𝑛

ρ2 𝑦=0

Solving the equations one can get

𝑥 = 𝑥0𝑐𝑜𝑠
1−𝑛𝑠

ρ + 𝑥0
′ 𝑠𝑖𝑛

1−𝑛𝑠

ρ , 𝑦 = 𝑦0𝑐𝑜𝑠
𝑛𝑠

ρ + 𝑦0
′ 𝑠𝑖𝑛

𝑛𝑠

ρ
It means both x and y motion are stable. The ring is called weak

focusing ring. From index n one can get the gradient 𝐺 =
𝜕By

𝜕x
= -

B0𝑛

ρ
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Matrix formalism（矩阵形式）

For a general constant G or K, the x and y motions satisfy 
𝑢 ″ + 𝐾 𝑢(𝑠) = 0, 𝑤𝑖𝑡ℎ 𝑢(0) = 𝑢0, 𝑢′ (0) = 𝑢0′

Introduce a vector 𝑢(𝑠) 𝑢 𝑠
𝑢′ 𝑠

, the general solution can be written as 𝑢(𝑠)=𝑀(𝑠|0)𝑈(0)

where

M(s|0)=

𝑪𝒐𝒔 𝑲𝑠
1

𝑲
𝑺𝒊𝒏 𝑲𝑠

− 𝑲𝑺𝒊𝒏 𝑲𝒔 𝑪𝒐𝒔 𝑲𝑠
, 𝑲 > 𝟎, 𝒇𝒐𝒖𝒄𝒖𝒔𝒊𝒏𝒈

1 𝑠
0 1

, 𝑲 = 𝟎, 𝒅𝒓𝒊𝒇𝒕 𝒔𝒑𝒂𝒄𝒆

𝑪𝒐𝒔𝒉 −𝑲𝑠
1

−𝑲
𝑺𝒊𝒏𝒉 −𝑲𝑠

−𝑲𝑺𝒊𝒏𝒉 −𝑲𝒔 𝑪𝒐𝒔𝒉 −𝑲𝑠
, 𝑲 < 𝟎, 𝒅𝒆𝒇𝒐𝒖𝒄𝒖𝒔𝒊𝒏𝒈

Where the form of matrix describe the motion only on one plane phase space. A general 
matrix can be written as 𝑀𝑖𝑗 , 𝑖 𝑎𝑛𝑑 𝑗 = 1,2,3 … 6, indexes i and j stand for {𝑥, 𝑥′, y, 𝑦′, z, δ}.
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Thin-lens approximation（薄透镜近似）

Let 𝑙 → 0, 𝐾 → ∞, 𝐾𝑙 =
1

𝑓
, 𝑓 is the focal length(𝑓 >0), the transfer

matrixes are  𝑀𝑥𝑓=
1 0

−
1

𝑓
1 , 𝑀𝑦= 

1 0
1

𝑓
1 , or

M=                          focusing magnet                          defocusing magnet

1 0 0 0

1/ 1 0 0

0 0 1 0

0 0 1/ 1

f

f

 
 
− 

 
 
 

1 0 0 0

1/ 1 0 0

0 0 1 0

0 0 1/ 1

f

f

 
 
 
 
 

− 
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Sector dipole and rectangular dipole（扇形二极铁与矩形二极磁铁）

𝑀𝑆=

𝑀𝑅=

Sector dipole and rectangular dipole are different because they have different 
edge focusing effects. 

cos sin 0 0

sin / cos 0 0

0 0 1

0 0 0 1

  

  



 
 
− 

 
 
 

1 sin 0 0

0 1 0 0

0 0 1 tan
2

1
0 0 ( tan 2) tan 1 tan

2 2

 


 

 
  



 
 
 
 

− 
 
 

− − 
 
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Mirror image system(镜像系统)

Transfer matrix of serries magnets satisfy the conditions are if 

𝑥0 =1, 𝑥0
′ =0, then 𝑥1 =1, 𝑥1

′ =0, and if 𝑥0 =0,𝑥0
′ =1, then 𝑥1=0, 𝑥1

′ =-1

Let the matrix form satisfy 
𝑥0

𝑥0
′ = 

𝑚11 𝑚21

𝑚12 𝑚22

𝑥0

𝑥0
′

With the conditions, one can solve out 𝑚11=1, 𝑚12=0, 𝑚21=0, 

𝑚22 =-1, the 1d mirror is
1 0
0 −1

, and the 2d and 3d mirror as 

following                         and

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 
 

− 
 
 

− 

1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1
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Chain of transfer matrices and map(传输矩阵链及映射)

For the beam line consists of the elements #1, #2, #3,……,#m, the final 

position vector 
𝑥𝑚

𝑥𝑚
′ and the initial position vector 

𝑥1

𝑥1
′  satisfy the 

following relation
𝑀 (𝑚|1)= 𝑀𝑚. 𝑀𝑚−1…… 𝑀3. 𝑀2. 𝑀1

If a ring consist of the parts, their transfer matrices are 𝑀1, 𝑀2, the total 
matrix 𝑅 from 1 to 2 is 𝑀2. 𝑀1 or 𝑅 = 𝑀2. 𝑀1, 𝑀2 = 𝑅. 𝑀1

−1, on the other
hand from 2 to 1 is 𝑅′ = 𝑀1. 𝑀2 = 𝑀1. 𝑅. 𝑀1

−1, 𝑅′ is different from 𝑅, but 𝑅′ and 
𝑅 has a relation, it is called as similarity transformations(相似变换).
For the 3d case the rule is the same. If the m elements are same, the final 
matrix is 𝑀 (𝑚|1)= 𝑀1

𝑚.

The transfer matrix can be represented as a map, X(s)= 𝑀 (𝑠|0) X(𝑠0), where 
X(𝑠0) is the initial state vector, X(s) is the state at s. For the linear system, the 
map is equivalent with matrices, but for the nonlinear system matrices do not 
work any more, one can use Taylor map, Lie map or even other form to 
represent it(for example Poincare section)
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Symplecticity and Liouville theorem（辛和刘维定理）

For a Hamiltonian system, the transfer matrix M must satisfy so 
called as the symplectic condition. 
෩MSM=S, “~” means transpose of the matrix

S=                       , S2 =
0 1

−1 0
, and M is a 6×6 square matrix.

The symplectic condition is equivalent to the phase space volume is 
conserved, and actually it is the Liouville theorem.

2

2

2

0 0

0 0

0 0

S

S

S

 
 
 
 
 
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Transverse deflecting RF cavity(横向偏转腔)

This kind of RF cavity is also called as the crab cavity(螃蟹腔). It will kick the 
beam on horizontal plane by ∆ 𝑥′, For a 0 length cavity, its 4D (𝑥, 𝑥′, z, δ) and 
6D (𝑥, 𝑥′, y, 𝑦′, z, δ) transfer matrices like as

Where δ=
∆𝑷

𝑷0
, 𝑷0 is the momentum of the particle and ∆𝑷 is the spread of the 

momentum. By the way, this kind of cavity is often used in collider for 
compensating the crossing angle effects at interaction point.

1 0 0 0 0 0

0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1

k

k

 
 
 
 
 
 
 
  
 

1 0 0 0

0 1 0

0 0 1 0

0 0 1

k

k

 
 
 
 
 
 
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Stability criterion(稳定性判据)
Consider a linear dynamical system that has a one-turn matrix or map M, after n turns, 
the transfer matrix or map will be 𝑀𝑛,the stable condition is that when n→∞, all of 
𝑀𝑛 elements are confined. In the theory of linear algebra, we know the a matrix M can 
be expressed as VΛV−1, Λ is a diagonal matrix, for x motion the form is 

λ1 0
0 λ2

, λ1 and λ2 are the eigenvalues. For x and y motions, it will have 4 

Eigenvalues, Λ will be like as 

After n turns, the matrix will be VΛ𝑛V−1= V                       V−1

The stable motion requires | λ𝑖 | ≦1, 𝑖=1,2,3,4

1

2

3

4

0 0 0

0 0 0

0 0 0

0 0 0









 
 
 
 
 
 

1

2

3

4

0 0 0

0 0 0

0 0 0

0 0 0

n

n

n

n









 
 
 
 
  
 
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Courant-Snyder formalism(C-S形式)

Hill equation can be solved as the other form solution especially for 
K(s) with the period L, if the motion is stable, the solution is

u s = 𝜀𝛽 𝑠 𝐶𝑜𝑠 ψ 𝑠 + ψ0 (5)           

𝜀 is a normalization constant called as emittance, ψ0 is the initial 
phase at s=0, one can impose the condition ψ 0 = 0, and the two 
initial 𝜀, ψ0 are equivalent to 𝑢0, 𝑢0′. 𝛽 𝑠 has two properties: 𝛽 𝑠
>0, it has a period L, and it is so called Courant-Snyder formalism, 
𝛽 𝑠 is  called Courant-Snyder 𝛽-function or simply the 𝛽-function, 
it is also called as twiss parameters.
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Substituting eq.(5) to the Hill equation, one can get 
1

2
𝛽𝛽′′ −

1

2
𝛽′2 − 𝛽2ψ′2 + 𝛽2𝐾 = 0 (6)

𝛽′ ψ′+𝛽ψ′′=0                                                                 (7)

Integrate eq.(7), and note that (𝛽ψ′ )′= 𝛽′ ψ′ + 𝛽ψ′′

one can get 𝛽ψ′ = 𝑐𝑜𝑠𝑡𝑎𝑛𝑡 = 1, 1 is a most simple constant. We 
then have ψ 𝑙 = 0׬

𝑙 𝑑𝑠

𝛽(𝑠)

One can define two more functions 

α(s)=-
1

2
𝛽′(s) and γ(s)= 

1+α2(s)
𝛽(𝑠)

We call α(s), 𝛽 𝑠 , γ(s) and 𝜓 𝑠 the Courant-Snyder functions.  𝛽, 
γ, 𝜀 are always positive, and 𝜓 is always increase with s 
monotonically(单调). Dimensionality of 𝛽, 𝜀 , α , γ, 𝜓 are m, m-rad, 
dimensionless, 1/m and radian(弧度) respectively.
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From (5), we have 

𝑢′ = − 𝜀
𝛼

𝛽
𝐶𝑜𝑠 ψ + ψ0 -

𝛼

𝛽
𝑆𝑖𝑛 ψ + ψ0 (8)

Combined with eq.(5), one can get

𝛽𝑢′+ α𝑢= − ε𝛽 𝑆𝑖𝑛 ψ + ψ0 （9）

So 𝛽𝑢′+ α𝑢 can be considered to be the momentum canonical 
conjugate to 𝑢, 𝑢 being proportional to 𝐶𝑜𝑠 ψ + ψ0 .

From eq.(5) and eq.(9), one can get 𝑢2 + (𝛽𝑢′+ α𝑢)2= ε𝛽 or 
equivalently 

γ𝑢2 + 2𝛼𝑢𝑢′ + 𝛽𝑢′2 = ε=constant                                           (10)

This constant is called the emittance of the particle.
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Phase space ellipse (相空间椭圆)

γε

ε/β
slop=−γ/α

slop=−α/β

εβ
ε/γ

Area=πε

From eq. (5)，the motion of a 
particle is completely specified by 
two constants the emittance ε and 
initial phase ψ0. It is important to 
note that the same C-S functions 
apply to all particles in the 
accelerator regardless of their initial 
phase or emittances. C-S functions 
are strictly properties of the lattice 
design, and do not depend on any 
particle or  beam properties. Note 
that, C-S formalism can not be 
used  for nonlinear systems in that 
case one can implement Lie algebra. The Courant-Snyder phase space ellipse
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Beam emittance(束流发射度)

So far，we have defined an emittance of a particle. If we have a beam of particles, 

these particles have a distribution of values of ε and Ψ0. From eq.(10), the beam 

distribution in (𝑢, 𝑢′) is

Ψ(𝑢, 𝑢′)= Ψ(γ𝑢2 + 2α𝑢𝑢′ + 𝛽𝑢′2)                                                 (11)

One can normalize Ψ (𝑢, 𝑢′) according to

∞−׬

∞
𝑑𝑢 ∞−׬

∞
𝑑𝑢′ Ψ (𝑢, 𝑢′) =1

From Eq. (11), one can see Ψ (𝑢, 𝑢′) is independent of Ψ0 and only dependent to 𝜀, so 

one can get

0׬

∞
Ψ(𝜀)𝑑𝜀=1

And 0׬

∞
𝜀Ψ(𝜀)𝑑𝜀=𝜀𝑟𝑚𝑠, 𝜀𝑟𝑚𝑠 is the root of mean square of the emittance distribution
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Beam distribution moments(束流分布矩)

If we assume the beam distributionΨ (𝑢, 𝑢′)is a Gaussian 
distribution, we can calculate out the second moments as following

<𝜀>=׬−∞

∞
𝑑𝑢 ∞−׬

∞
𝑑𝑢′ 𝜀Ψ(𝑢,𝑢′)=𝛾<𝑢2>+2α<𝑢𝑢′>+𝛽<𝑢′2>= 2𝜀𝑟𝑚𝑠

<𝑢2>=׬−∞

∞
𝑑𝑢 ∞−׬

∞
𝑑𝑢′ 𝑢2Ψ(𝑢,𝑢′)=𝛽𝜀𝑟𝑚𝑠

<𝑢𝑢′>=׬−∞

∞
𝑑𝑢 ∞−׬

∞
𝑑𝑢′ 𝑢𝑢′Ψ(𝑢,𝑢′)=-α𝜀𝑟𝑚𝑠

<𝑢′2>=׬−∞

∞
𝑑𝑢 ∞−׬

∞
𝑑𝑢′ 𝑢′2Ψ(𝑢,𝑢′)=𝛾𝜀𝑟𝑚𝑠
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Definition of beam emittance(束流发射度的定义)

For a distribution Ψ(ε) other than Gaussian, a definition of the rms beam emittance can be as 
following

ε𝑟𝑚𝑠=
1

2
<ε> =

1

2
∞−׬

∞
𝑑𝑢 ∞−׬

∞
𝑑𝑢′ ε Ψ(u, u′) 

Envelope equation(包络方程)

𝑑2σ(𝑠)

ds2 + 𝐾(𝑠)σ(𝑠) =
ε𝑟𝑚𝑠

2

σ3(𝑠)
, 

this equation is nonlinear differential equation, it is hard to solve except in a drift space

Σ matrix(束流分布的Σ矩阵)

A Gaussian beam distribution can be generally written as exp(-
1

2
෩𝑈𝐴𝑈) ,where 𝑈 is the 2n-D 

state vector, 𝐴 is 2n×2n symmetric, positive definite matrix, the normalized coefficient has 

been omitted. For 2D case there is a simpler form 𝑈= 𝑢
𝑢′

𝐴=Σ−1 =
1

ε𝑟𝑚𝑠

γ α
α β  or A−1 = Σ= ε𝑟𝑚𝑠

β −α
−α γ

෩𝑈 Σ−1 𝑈= ε𝑟𝑚𝑠

The beam propagates from s1 to s2, 𝑈2=M(s2| s1) 𝑈1，෩𝑈2Σ2
−1𝑈2=෩𝑈1Σ1

−1𝑈1

We know det 𝑀 (s2| s1)= det ෩𝑀(s2| s1)=1, so det Σ2= det Σ1= ε𝑟𝑚𝑠
2
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Transfer map in terms of C-S function(传输映射的C-S函数表示)

We know u s = 𝜀𝛽 𝑠 𝐶𝑜𝑠 ψ 𝑠 + ψ0 = 𝑎 𝛽 𝑠 𝐶𝑜𝑠ψ 𝑠 + 𝑏 𝛽 𝑠 𝑆𝑖𝑛ψ 𝑠 , from 

the equation and set ψ0 =0, one can get a =
𝑢0

𝛽
, b = 𝛽𝑢0

′ +
α0

𝛽
𝑢0, then

u s =
𝛽 𝑠

𝛽0
[𝐶𝑜𝑠ψ 𝑠 + α0𝑆𝑖𝑛ψ 𝑠 ] 𝑢0+ 𝛽0𝛽(𝑠)𝑢0

′ 𝑆𝑖𝑛ψ 𝑠

u′ s =
1

𝛽0𝛽 𝑠
(𝛼0−α 𝑠 𝐶𝑜𝑠ψ 𝑠 − (1 + α0α(𝑠))𝑆𝑖𝑛ψ 𝑠 ]𝑢0 +

𝛽0

𝛽 𝑠
[𝐶𝑜𝑠ψ 𝑠 − α 𝑠 𝑆𝑖𝑛ψ 𝑠 ]𝑢0

′

These expression can be cast in a matrix form
𝑢(𝑠)
𝑢′(𝑠)

= 𝑀 (𝑠|𝑠0) 𝑢(𝑠0)
𝑢′(𝑠0)

𝑀 (𝑠| 𝑠0) =

𝛽(𝑠)

𝛽0
(𝐶𝑜𝑠ψ + α0𝑆𝑖𝑛ψ) 𝛽0𝛽(𝑠)𝑆𝑖𝑛ψ

α0−α(𝑠)

𝛽0𝛽(𝑠)
𝐶𝑜𝑠ψ −

1+α0α(𝑠)

𝛽0𝛽(𝑠)
𝑆𝑖𝑛ψ

𝛽0

𝛽 𝑠
(𝐶𝑜𝑠ψ − α(𝑠)𝑆𝑖𝑛ψ)

(12)

This is the transfer map in terms of C-S function.
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One-period map(一个周期的映射)

One period map means 𝛽 = 𝛽0, α = α0, set the phase advance 
ψ for one-period, after simplification one can get the map

𝑀 (𝑠| 𝑠0) =
𝐶𝑜𝑠ψ + α0𝑆𝑖𝑛ψ 𝛽0𝑆𝑖𝑛ψ

−γ𝑆𝑖𝑛ψ 𝐶𝑜𝑠ψ − α0𝑆𝑖𝑛ψ

where γ =
1+α0

2

𝛽0
.

If the map is 
𝑚11 𝑚12

𝑚21 𝑚22
, comparing them one can get

Ψ= 𝐶𝑜𝑠−1 𝑚11+𝑚22

2
, 𝛽0= 𝑚12/ 𝑆𝑖𝑛ψ,α0= 

𝑚11−𝑚22

2𝑆𝑖𝑛ψ
, γ = -

𝑚21

𝑆𝑖𝑛ψ

(𝐶𝑜𝑠−1 is also noted as ArcCos)
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The inter-position map

From eq.(11), the transfer map can be expressed in C-S function, in other way, from the relation 
equation, one can get the relation of twiss functions from the start to end point

α2

β2

γ2

=

𝑚11𝑚22 + 𝑚12𝑚21 −𝑚11𝑚21 −𝑚12𝑚22

−2𝑚11𝑚12 𝑚11
2 𝑚12

2

−2𝑚21𝑚22 𝑚21
2 𝑚22

2

α1

β1

γ1

From this equation, one can get the map for drift 

α2= α1 − γ1s, β2= β1 − 2 α1s+ γ1s2, γ2= γ1

For quadruple

β2=൞

β1

2
−

γ1

2𝐾
𝐶𝑜𝑠2 𝐾𝑠 −

α1

𝐾
𝑆𝑖𝑛2 𝐾𝑠 +

β1

2
+

γ1

2𝐾
𝐹 𝑞𝑢𝑎𝑑

β1

2
+

γ1

2|𝐾|
𝐶𝑜𝑠ℎ2 |𝐾|𝑠 −

α1

𝐾
𝑆𝑖𝑛ℎ2 𝐾 𝑠 +

β1

2
−

γ1

2 𝐾
𝐷 𝑞𝑢𝑎𝑑

The betatron tune in one period is

ν=
Ψ

2π
=

1

2π
𝑠0׬

𝑠0+𝐿 𝑑𝑠

β(𝑠)
=

1

2π
ׯ

𝑑𝑠

β(𝑠)

The tune does not depend on the start point 𝑠0.
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Normal form(规范形式)
Rewrite Eq.(12) as 𝑀 (𝑠| 𝑠0)= 𝐴−1 𝑠 𝑅𝐴 𝑠

The right side is the normal form representation of transfer matrix 𝑀.

𝐴 𝑠 =

1

𝛽(𝑠)
0

α(𝑠)

𝛽(𝑠)
𝛽(𝑠)

, 𝐴−1 𝑠 =
𝛽(𝑠) 0

−
α(𝑠)

𝛽(𝑠)

1

𝛽(𝑠)

, 𝑅 =
𝐶𝑜𝑠ψ 𝑆𝑖𝑛ψ

−𝑆𝑖𝑛ψ 𝐶𝑜𝑠ψ

Let 𝑣
𝑝𝑣

= 𝐴 𝑢
𝑢′ = 

𝑢

𝛽

𝛽𝑢′+α𝑢

𝛽

The matrix 𝐴 𝑠  is the transformation from the physical coordinates (𝑢, 𝑢′) to 
the normalized coordinates 𝑣, 𝑝𝑣 , it is a canonical transformation, because 
det𝐴=1. The emittance can be written as ε= 𝑣2 + 𝑝𝑣

2

In the normalized phase space 𝑣, 𝑝𝑣 , the particle trajectory will be a circle, 
and the radius of the circle is ε, the area is πε
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Field error(场误差)
The magnetic field with errors can be written as 
𝐵𝑥=𝐺𝑦 + Δ𝐵𝑥

𝐵𝑦= 𝐵𝑦0 + 𝐺𝑥 + Δ𝐵𝑦

The equation of motion become 

𝑥″ + 𝐾𝑥 𝑥 = −
Δ𝐵𝑦

𝐵ρ

𝑦″ + 𝐾𝑦 𝑦 =
Δ𝐵𝑥

𝐵ρ

Where 𝐾𝑥= 
1

ρ2+ 
𝐺

𝐵ρ
, 𝐾𝑦= -

𝐺

𝐵ρ
, we have assumed there are no electric field 

devices in the accelerator. A general magnet error can be expressed in
multiple expansion Δ𝐵𝑦+𝑖Δ𝐵𝑥 = 𝐵𝑦0 σ𝑚=0

∞ (𝑏𝑚 + 𝑖𝑎𝑚)(𝑥 + 𝑖𝑦)𝑚, 𝐵𝑦0 is a 
reference field. m=0,1 the field errors will produce linear effects, m≥2 the 
errors will bring nonlinear effects.
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Dipole and quadrupole field errors，effects and sources
(二四极磁铁场误差效应及来源)

Multiple coefficient effects sources

m=0

𝑎0 vertical orbit distortion Bending magnet roll
Quadrupole vertical misalignment

𝑏0 horizontal orbit 
distortion

Bending magnet field or length error
Quadrupole horizontal misalignment

m=1

𝑎1 linear x-y coupling Quadrupole magnet roll
Feed-down of sextuple with vertical orbit
Sextupole vertical misalignment

𝑏1 tune shift
β-function beat

Quadrupole field or length error
Feed-down of sextuple with horizontal orbit
Sextupole horizontal misalignment

Different multipole errors produce different beam dynamical effects.  Dipole 
errors produce orbit distortions, Quadrupole errors produce betatron tune shifts 
and distortions in 𝛽 –functions. For the dipole, the error fields are Δ𝐵𝑥= 𝐵𝑦0𝑎0, 
Δ𝐵𝑦= 𝐵𝑦0𝑏0. For the quadrupole Δ𝐵𝑥= 𝐵𝑦0(𝑎1𝑥 + 𝑏1𝑦), Δ𝐵𝑦= 𝐵𝑦0(𝑏1𝑥 − 𝑎1𝑦)
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Orbit distortion(轨道畸变)
Single dipole kick

When there are diploe field errors in a storage ring, the beam will 
no longer coincide with the design trajectory. Comparing with the 
design trajectory, it will produce a so-called closed orbit 
distortion(COD). When 𝑎0≠0, there is a horizontal dipole field error, 
causing a vertical COD, When 𝑏0≠0, it will cause a horizontal COD.

A dipole error will produce not only a displacement but also a slope. 

For the single kick, after kick COD is 
𝑢0

𝑢0
′ (exit), Before kick the COD 

is 
𝑢0

𝑢0
′ −ϴ

(entrance), after one turn the orbit is

𝑢0

𝑢0
′ −ϴ

= 
𝐶𝑜𝑠ψ + α0𝑆𝑖𝑛ψ 𝛽0𝑆𝑖𝑛ψ

−γ𝑆𝑖𝑛ψ 𝐶𝑜𝑠ψ − α0𝑆𝑖𝑛ψ
𝑢0

𝑢0
′
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Solving this equation one can get

𝑢0= 
𝛽0ϴ

2
Cot

ψ

2
, 𝑢0

′ = −
ϴ

2
(α0Cot

ψ

2
− 1), 𝑢0

′ − ϴ = −
ϴ

2
(α0Cot

ψ

2
+ 1)

At other position s, the COD is
𝑢(𝑠)

𝑢′(𝑠)
= 𝑀 (𝑠|𝑠0) 

𝑢0

𝑢0
′

If ψ= 2π𝑛, n is an integer, Cot
ψ

2
→ ∞,and therefor 𝑢0 → ∞, and this is 

the integer resonance.

Multiturn closed orbit(多圈闭轨)

If ψ = 2π
𝑛

𝑚
，the particle will return at the origin phase space point 

after 𝑚 turns, there are m points in the phase space. This is the 
multiturn closed orbit.
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Distributed dipole error and closed orbit bump
(分布式二极误差及局部突轨)
In reality, dipole field errors are distributed and can described as Δ𝐵𝑥(𝑠) and Δ𝐵𝑦(𝑠), the COD 
is obtained by superposition as following

𝑢 𝑠 = 𝑠׬

𝑠+𝐿
𝑑𝑠

′
∆𝐵 𝑠′

𝐵ρ
𝛽 𝑠 𝛽 𝑠′

2𝑆𝑖𝑛πν
Cos(πν − |Ψ 𝑠′ − Ψ(𝑠)|) (14)

Here, ∆𝐵=−∆𝐵𝑦 for x-orbit, Δ𝐵=Δ𝐵𝑥 for y-orbit.

A most common COD bump consists three correctors. In general, the COD caused by a 3-
bump system is given by

𝑢 𝑠 =
𝛽 𝑠

2𝑆𝑖𝑛πν
෍

𝑖=1

3

ϴ𝑖 𝛽𝑖Cos(πν − |Ψ 𝑠 − Ψ𝑖)|)

3-bump means 𝑢 𝑠3 =0, and 𝑢′ 𝑠3 =0, which yields

ϴ1 𝛽1Cos(πν − Ψ3 + Ψ1)+ϴ2 𝛽2Cos(πν − Ψ3 + Ψ2) +ϴ3 𝛽3Cos(πν)=0

ϴ1 𝛽1Sin(πν − Ψ3 + Ψ1)+ϴ2 𝛽2Sin(πν − Ψ3 + Ψ2) +ϴ3 𝛽3Sin(πν)=0

The solution is

ϴ2=- ϴ1
𝛽1

𝛽2

𝑆𝑖𝑛(Ψ3−Ψ1)

𝑆𝑖𝑛(Ψ3−Ψ2)
, ϴ3= ϴ1

𝛽1

𝛽3

𝑆𝑖𝑛(Ψ2−Ψ1)

𝑆𝑖𝑛(Ψ3−Ψ2)
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Orbit correction(轨道校正)
Consider a circular accelerator with M BPMs and N orbit correctors 
around the ring, If M=N, it means all BPM  read 0, it is a perfect 
correction. If M<N, it mean the solution is not unique. So we only 
consider the case M≥ N. The elements of response matrix 𝑅𝑖𝑗 is

𝑅𝑖𝑗 =
𝛽𝑖𝛽𝑗

2𝑆𝑖𝑛π
𝐶𝑜𝑠(πν − |ψ𝑗 − ψ𝑖|)

The COD contribution due to the i-th corrector  at j-th monitor is 
Δ𝑥𝑗 = 𝑅𝑖𝑗 ϴ𝑖 , the matrix 𝑅 is determined by the lattice design. In a 
matrix form, it is

Δ𝑥= 𝑅𝐶, Δ𝑥 = , 𝐶 =

1

2

.

.

M

x

x

x

 
 
 
 
 
 
 
 

1

2

.

.

N







 
 
 
 
 
 
 
  33



Here R matrix is from lattice design. In real machine, there exist different 
kinds of errors, the design lattice is not exact, the measuring matrix is often 
used for orbit correction, and he correction need to repeat several times. 
And in some time, we want to emphasize some of BPMs, where are of 
more importance, the weight function might be introduced. The 
SVD(singular value decomposition) is often used for the orbit correction.
Alternating current dipole is often used to kick the beam or some bunches 
for many turns, then people measure and analyze response of the beam or 
the bunches, it is called as the beam transfer function in frequency-domain, 
or Greens’ function in time-domain. From the two functions people can get 
a wealth of beam dynamic information.
Consider a 1-D case in horizontal dimension. A static kick Δ𝑥′ = 𝜃, 

the orbit after one turn is 𝑇𝑋0, 𝑋0 = 0
𝜃

, after many turns 

𝑋 = 𝑋0 + 𝑇𝑋0 + 𝑇2𝑋0 + ⋯ = 1 − 𝑇 −1, where we suppose 𝜃 is very
small, so the beam after many turn’s kick still alive.  Now we calculate

1 − 𝑇 −1.
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From 
1

𝑎𝑑−𝑏𝑐

𝑎 𝑏
𝑐 𝑑

𝑑 −𝑏
−𝑐 𝑎

= 
1 0
0 1

, one can have that the inverse of 
𝑎 𝑏
𝑐 𝑑

is 
1

𝑎𝑑−𝑏𝑐

𝑑 −𝑏
−𝑐 𝑎

𝑇 =
𝐶𝑜𝑠𝜇 + 𝛼𝑆𝑖𝑛𝜇 𝛽𝑆𝑖𝑛𝜇

−
1+α2

𝛽
𝑆𝑖𝑛𝜇 𝐶𝑜𝑠𝜇 − 𝛼𝑆𝑖𝑛𝜇

, 1 − 𝑇 =
1 − (𝐶𝑜𝑠𝜇 + 𝛼𝑆𝑖𝑛𝜇) −𝛽𝑆𝑖𝑛𝜇

1+α2

𝛽
𝑆𝑖𝑛𝜇 1 − (𝐶𝑜𝑠𝜇 − 𝛼𝑆𝑖𝑛𝜇)

, 

The determinant of 1 − 𝑇 is (1 − 𝐶𝑜𝑠𝜇)2 − α2𝑆𝑖𝑛2𝜇 + 1 + α2 𝑆𝑖𝑛2𝜇 = 2 − 2𝐶𝑜𝑠𝜇

The inverse of 1 − 𝑇 is 
1

2−2𝐶𝑜𝑠𝜇

1 − (𝐶𝑜𝑠𝜇 − 𝛼𝑆𝑖𝑛𝜇) 𝛽𝑆𝑖𝑛𝜇

−
1+α2

𝛽
𝑆𝑖𝑛𝜇 1 − (𝐶𝑜𝑠𝜇 + 𝛼𝑆𝑖𝑛𝜇)

.

𝑋0 = 0
𝜃

, the COD at the kicker is 
𝛽𝑆𝑖𝑛𝜇

2−2𝐶𝑜𝑠𝜇
𝜃, it is coincide with the formula of corrector 𝑢0= 

𝛽0ϴ

2
Cot

ψ

2
.

Another method: matrix 𝑇 has two eigenvalue 𝑒−𝑖𝜇 and 𝑒𝑖𝜇, two eigenvectors are −𝛽
𝑖+𝛼

 and  −𝛽
−𝑖+𝛼

 .

So 𝑇 =
𝐶𝑜𝑠𝜇 + 𝛼𝑆𝑖𝑛𝜇 𝛽𝑆𝑖𝑛𝜇

−
1+α2

𝛽
𝑆𝑖𝑛𝜇 𝐶𝑜𝑠𝜇 − 𝛼𝑆𝑖𝑛𝜇

= 𝐸 𝑒−𝑖𝜇 0
0 𝑒𝑖𝜇

𝐸−1, 
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𝐸 =
−𝛽 −𝛽

𝑖 + 𝛼 −𝑖 + 𝛼
, 𝐸−1 =

−
1+𝑖𝛼

2𝛽
−

𝑖

2

−1+𝑖𝛼

2𝛽

𝑖

2

1 − 𝑇 = 𝐸
1 0
0 1

𝐸−1 − 𝐸 𝑒−𝑖𝜇 0
0 𝑒𝑖𝜇

𝐸−1 = 𝐸 1 − 𝑒−𝑖𝜇 0
0 1 − 𝑒𝑖𝜇

𝐸−1, 

(1 − 𝑇)−1 = 𝐸 𝐼𝑛𝑣 1 − 𝑒−𝑖𝜇 0
0 1 − 𝑒𝑖𝜇

𝐸−1 = 𝐸

1

1 − 𝑒−𝑖𝜇
0

0
1

1 − 𝑒𝑖𝜇

𝐸−1

=
1

2−2𝐶𝑜𝑠𝜇

1 − (𝐶𝑜𝑠𝜇 − 𝛼𝑆𝑖𝑛𝜇) 𝛽𝑆𝑖𝑛𝜇

−
1+α2

𝛽
𝑆𝑖𝑛𝜇 1 − (𝐶𝑜𝑠𝜇 + 𝛼𝑆𝑖𝑛𝜇)

. 
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For the alternating current dipole, it has a kick ϴ𝐸𝑖𝑚𝜑 at the m-th turn on the beam, the total 
effect is 

𝑒𝑖𝑚𝜑 + 𝑒𝑖 𝑚−1 𝜑𝑇 + 𝑒𝑖 𝑚−2 𝜑𝑇2 + ⋯ 𝑋0

= 𝑒𝑖𝑚𝜑(1 − 𝑒−𝑖𝜑𝑇)−1𝑋0, (1 − 𝑒−𝑖𝜑𝑇)−1 = 𝐸

1

1−𝑒−𝑖𝜇−𝑖𝜑 0

0
1

1−𝑒𝑖𝜇−𝑖𝜑

𝐸−1

= 
−𝛽 −𝛽

𝑖 + 𝛼 −𝑖 + 𝛼

1

1−𝑒−𝑖𝜇−𝑖𝜑 0

0
1

1−𝑒𝑖𝜇−𝑖𝜑

−
1+𝑖𝛼

2𝛽
−

𝑖

2

−1+𝑖𝛼

2𝛽

𝑖

2

(1 − 𝑒−𝑖𝜑𝑇)−1 = 𝐸

1

1−𝑒−𝑖𝜇−𝑖𝜑 0

0
1

1−𝑒𝑖𝜇−𝑖𝜑

𝐸−1
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= 
−𝛽 −𝛽

𝑖 + 𝛼 −𝑖 + 𝛼

1

1−𝑒−𝑖𝜇−𝑖𝜑 0

0
1

1−𝑒𝑖𝜇−𝑖𝜑

−
1+𝑖𝛼

2𝛽
−

𝑖

2

−1+𝑖𝛼

2𝛽

𝑖

2

If 𝜑 = 0, it means the kick is static, it is the case just before.

If 𝜑 ≠ 0, the beam will have a resonance at 𝜑 = 2𝜋𝑛 ± 𝜇, 𝑛 is integer 
(

1

1−𝑒𝑖𝜇−𝑖𝜑 → ∞ or 
1

1−𝑒−𝑖𝜇−𝑖𝜑 → ∞), This means the frequency of the AC 
kick is coincide with the betatron frequency. The Ac dipole is useful for 
beam diagnostics purposes. The oscillating signal from BPM is easer to 
detect with higher frequency than the static signal with any kinds errors. 
In the mean time, the signal can be enhanced due to the resonance 
when the AC dipole frequency is approaches the betatron frequency.
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Tune shift(频移)
Quadrupole magnet field errors

One turn transfer matrix is 𝑀= 
𝐶𝑜𝑠2πν + α0𝑆𝑖𝑛2πν 𝛽0𝑆𝑖𝑛2πν

−γ𝑆𝑖𝑛2πν 𝐶𝑜𝑠2πν − α0𝑆𝑖𝑛2πν

A thin length quadrupole transfer matrix is 
1 0

−𝑞 1
, a thin length quadrupole 

magnet field errors mean that q=0 is no error. The quadrupole magnet field errors could be 
equivalent to q≠0, The one turn transfer matrix become 

1 0
−𝑞 1

𝑀

=
𝐶𝑜𝑠2πν + α0𝑆𝑖𝑛2πν 𝛽0𝑆𝑖𝑛2πν

−γ𝑆𝑖𝑛2πν − 𝑞(𝐶𝑜𝑠2πν + α0𝑆𝑖𝑛2πν) 𝐶𝑜𝑠2πν − α0𝑆𝑖𝑛2πν − 𝑞𝛽0𝑆𝑖𝑛2πν

= 
𝐶𝑜𝑠2πν′ + α′𝑆𝑖𝑛2πν′ 𝛽′𝑆𝑖𝑛2πν′

−γ′𝑆𝑖𝑛2πν′ 𝐶𝑜𝑠2πν′ − α′𝑆𝑖𝑛2πν′
(14)
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The twiss parameters change to (α′, 𝛽′, γ′), the tune change to ν′. 

2𝐶𝑜𝑠2πν′

=(𝐶𝑜𝑠2πν − α0𝑆𝑖𝑛2πν） + (𝐶𝑜𝑠2πν + α0𝑆𝑖𝑛2πν − 𝑞𝛽0𝑆𝑖𝑛2πν)

=2 𝐶𝑜𝑠2πν −𝑞𝛽0𝑆𝑖𝑛2πν

ν′=ν+ δν, 

2𝐶𝑜𝑠2π(ν+ δν)= 2𝐶𝑜𝑠2πνCos2πδν- 2Sin2πν 𝑆𝑖𝑛2πδν

= 2 𝐶𝑜𝑠2πν −𝑞𝛽0𝑆𝑖𝑛2πν

Note 𝐶𝑜𝑠2πνCos2πδν≈ 𝐶𝑜𝑠2πν, so we have 

-2Sin2πν𝑆𝑖𝑛2πδν=−𝑞𝛽0𝑆𝑖𝑛2πν or 𝑆𝑖𝑛2πδν= 𝑞𝛽0/2.

The tune shift is δν =
𝑞𝛽

4π
, it can be used for calculating ions effect from residual 

gas, space charge, beam-beam, lithium lens, electron cloud, and so on.

And from δν =
𝑞𝛽

4π
, one can get 𝛽= 

4πδν

𝑞
, it can be used for measuring 𝛽 function.
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β-beat and  half integer resonances(β拍波与半整数共振)

Quadrupole errors not only cause the tune shift but also the 𝛽 -function beat. The error occurs 
at 𝑠 = 𝑠0, its phase= ψ0, the particle transfer from any position A to 𝑠0 then back to A. The 
transfer matrix from A to 𝑠0 is

𝑀 (𝑠0|𝐴)

=

𝛽0

𝛽𝐴
(𝐶𝑜𝑠(ψ0 − ψ𝐴) + α𝐴𝑆𝑖𝑛(ψ0 − ψ𝐴)) 𝛽0𝛽𝐴𝑆𝑖𝑛(ψ0 − ψ𝐴)

α0 − α𝐴

𝛽0𝛽𝐴

𝐶𝑜𝑠(ψ0 − ψ𝐴) −
1 + α𝐴α0

𝛽0𝛽𝐴

𝑆𝑖𝑛(ψ0 − ψ𝐴)
𝛽𝐴

𝛽0
(𝐶𝑜𝑠(ψ0 − ψ𝐴) − α0𝑆𝑖𝑛(ψ0 − ψ𝐴)

Then the particle from 𝑠0 go back to 𝐴, the transfer matrix is 

𝑀 (𝐴|𝑠0)

=

𝛽𝐴

𝛽0
(𝐶𝑜𝑠(2πν − ψ0 − ψ𝐴 ) + α𝐴𝑆𝑖𝑛(2πν − (ψ0 − ψ𝐴)) 𝛽0𝛽𝐴𝑆𝑖𝑛(2πν − (ψ0 − ψ𝐴))

α𝐴−α0

𝛽0𝛽𝐴
𝐶𝑜𝑠(2πν − ψ0 − ψ𝐴 ) −

1+α𝐴α0

𝛽0𝛽𝐴
𝑆𝑖𝑛(2πν − ψ0 − ψ𝐴 )

𝛽0

𝛽𝐴
(𝐶𝑜𝑠(2πν − ψ0 − ψ𝐴 ) − α0𝑆𝑖𝑛(2πν − (ψ0 − ψ𝐴))
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With the errors at 𝑠0, the one turn transfer matrix is

𝑀 (𝐴|𝑠0)
1 0

−𝑞 1
𝑀 (𝑠0|𝐴) =

𝑚11 𝑚12

𝑚21 𝑚22
, 

and 𝑚12 = 𝛽𝐴 𝑆𝑖𝑛(2πν +
𝑞𝛽0𝛽𝐴

2
{𝐶𝑜𝑠 2𝜋𝜈) − 𝐶𝑜𝑠[2𝜋𝜈 − 2(ψ0 − 𝜓𝐴)] }

From this 

𝑚12 = 𝛽𝑁𝑒𝑤𝑆𝑖𝑛 2πν𝑁𝑒𝑤

= 𝛽𝐴 𝑆𝑖𝑛(2πν) +
𝑞𝛽0𝛽𝐴

2
{𝐶𝑜𝑠 2𝜋𝜈) − 𝐶𝑜𝑠[2𝜋𝜈 − 2(ψ0 − 𝜓𝐴)] },

one can get 
β𝑛𝑒𝑤−β

β
=

𝑞𝛽0𝛽𝐴

2𝑆𝑖𝑛(2πν)
𝐶𝑜𝑠 2𝜋𝜈) − 𝐶𝑜𝑠[2𝜋𝜈 − 2(ψ0 − 𝜓𝐴)] , 

here we think 𝑆𝑖𝑛(2πν𝑁𝑒𝑤)≈𝑆𝑖𝑛(2πν).

The 𝛽 function is distorted, the phase is 2𝜓𝐴. It means the frequency is doubled. 

The amplitude is proportional to q and 𝛽0. 

This phenomenon is called a 𝛽-beat or 𝛽-wave. 

If ν=half integer, 𝑆𝑖𝑛 2πν =0, 
𝛽′−𝛽

𝛽
or 𝛽′ − 𝛽 → ∞ , it is called as half integer resonance.
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Stopband(禁带)

δν =
𝑞𝛽

4π
, 

this equation is not exact, let’s come back to the original equation

2𝐶𝑜𝑠2π(ν+ δν)= 2 𝐶𝑜𝑠2πν −𝑞𝛽0𝑆𝑖𝑛2πν,

if q is so big that 2 𝐶𝑜𝑠2πν −𝑞𝛽0𝑆𝑖𝑛2πν > 2 or < −2, δν will have 
no real solution, this means exist a stopband in tune.

The stop band occurs near n/2, and covers only one side of the 
resonance, it depends on the sign of q

From this inequation, one can calculate the stopband gap width as

δν𝑠𝑡𝑜𝑝𝑏𝑎𝑛𝑑 =
1

π
𝑇𝑎𝑛−1

𝑞𝛽

2
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Adiabatic damping（绝热阻尼）
In order to accelerate the beam, we have to add a longitudinal electric field. The 
particles move in a horizontal storage ring under  the magnetic and electric fields,

𝐵 = 𝐵𝑥 , 𝐵𝑦 , 0 = 𝐺𝑦𝑦, 𝐵𝑦0 − 𝐺𝑥𝑥, 0 , 𝐸 = (0,0, 𝐸𝑧), 

The equation of y-motion is (𝛽 = 𝑣/𝑐,the vertical magnetic force is 𝑒𝛽𝑐𝐵𝑥)
𝑑

𝑑𝑡
𝑚0𝛾

𝑑𝑦

𝑑𝑡
= 𝑒𝛽𝑐𝐵𝑥

𝑑

𝑑𝑡
=𝛽𝑐

𝑑

𝑑𝑠
, ሶ𝑦 =

𝑑𝑦

𝑑𝑡
=𝛽𝑐

𝑑𝑦

𝑑𝑠
=𝛽𝑐𝑦′, 

𝛽𝑐(𝑚0𝛽𝑐𝛾𝑦′)′ = 𝑒𝛽𝑐𝐵𝑥 , where "′" means taking 
𝑑

𝑑𝑠

(𝛽𝛾𝑦′)′= 
𝑒𝐵𝑥

𝑚0
, then (𝛽𝛾)′ 𝑦′+𝛽𝛾𝑦′′ −

𝑒𝐵𝑥

𝑚0
= 0

We made the transverse focusing and defocusing  field like as 

𝐵𝑥= -
𝑃

𝑒
𝐾𝑦𝑦= -

𝑚0𝑐𝛽𝛾

𝑒
𝐾𝑦𝑦, this means the beam is accelerated at all time, the 

magnet strengths are proportional to the momentum of the particle. This is the 
transvers motion.
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For the longitudinal motion, the particles are accelerated by 𝐸𝑧 , then 
𝑑𝛾

𝑑𝑠
=

𝑒𝐸𝑧

𝑚0𝑐2 = 𝑔, 𝐸𝑧 is a 

constant, 𝛾 = 𝛾0 + 𝑔𝑠, the equation of motion becomes

(𝛽𝛾)′ 𝑦′+𝛽𝛾𝑦′′ −
𝑒

𝑚0𝑐
(−

𝑚0𝑐𝛽𝛾

𝑒
𝐾𝑦𝑦) = 0 or 𝑦′′+ 

(𝛽𝛾)′

𝛽𝛾
𝑦′+ 𝐾𝑦𝑦=0,

where 𝛽 = 𝛾2 − 1/𝛾, 𝛾′ = 𝑔, 𝛽′ =
𝛾′

𝛾2−1
−

𝛾
′ 𝛾2−1

𝛾2 =
𝛾′

𝛾2 𝛾2−1
, 

𝛽𝛾 ′ = 𝛽′𝛾 + 𝛽𝛾′ =
𝛾′

𝛾2 𝛾2−1
𝛾 +

𝛾2−1

𝛾
𝛾′ = 𝛾′ 𝛾

𝛾2 𝛾2−1
+

𝛾 𝛾2−1

𝛾2 𝛾2−1
=

𝛾𝛾′

𝛾2−1
，then

𝑦′′+ 

𝛾𝛾′

𝛾2−1

𝛾2−1
𝑦′+ 𝐾𝑦𝑦=0 or 𝑦′′+ 

𝛾𝛾′

𝛾2−1
𝑦′+ 𝐾𝑦𝑦=0, when 𝛾 ≫ 1, 𝑦′′+ 

𝑔

𝛾
𝑦′+ 𝐾𝑦𝑦=0

The equation has two independent solutions 𝐽0(
𝑘

𝑔
𝛾(𝑠)) and 𝑁0(

𝑘

𝑔
𝛾(𝑠)) . 𝐽0 is the Bessel 

function, 𝑁0 is the second kind Bessel function or Newmann function. 

The plots of two functions are shown in the next page.
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From the plot one can see that the oscillation decay 
with the distance or time. It is a damping effect. This
is called the adiabatic approximation, because there 
is no any median, the damping is only from acceleration. 
With adiabatic damping, the beam emittance scales as 

𝜖 ∝
1

𝛽𝛾
, one can define a normalized emittance 𝜖𝑁 = 𝛽𝛾𝜖.

Usually, it is used for comparing different types of 
accelerators. Physically, adiabatic damping comes 
from the following: a particle with momentum 𝑃, 
and the phase space coordinate (y, y′), after accelerating
the longitudinal momentum get a increase ∆𝑃, its  y
is unchanged, but its slope is reduced a little 

y′ →
𝑃𝑦

𝑃𝑧
=

𝑃

𝑃+∆𝑃
y′ < y′, it is decrease turn by turn.
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Linear coupling(线性耦合)

Consider a single thin-length skew quadrupole with a strength k, it will 
perturbate the particle motions over the x and y plane by the following 
equations

∆𝑥′ = −
𝐵𝑦𝑙

𝐵ρ
= −𝑘𝑦, ∆𝑦′ = −

𝐵𝑥𝑙

𝐵ρ
= −𝑘𝑥

To describe the linear coupled motion, we need  skew 4 × 4 

matrices, the vector is      , the matrix that describes the skew 

quadrupole action is 𝑀𝑠𝑞 =

x

x

y

y

 
 
 
 
 

 
1 0 0 0

0 1 0

0 0 1 0

0 0 1

k

k

 
 

− 
 
 
− 
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The one turn map is 𝑀0 =

The one turn map around the exit of the skew quadrupole is 𝑀𝑡𝑜𝑡 = 𝑀𝑠𝑞𝑀0

This total map have 4 new eigenvalues 𝑒±𝑖2πν+, 𝑒±𝑖2πν− , and 

2𝐶𝑜𝑠2πν± = 𝐶𝑜𝑠2πν𝑥 + 𝐶𝑜𝑠2πν𝑦 ± (𝐶𝑜𝑠2πν𝑥 − 𝐶𝑜𝑠2πν𝑦)2 + 𝑘2𝛽𝑥𝛽𝑦𝑆𝑖𝑛2πν𝑥𝑆𝑖𝑛2πν𝑦 (15)

The real solution ν± requires 𝑘 must be limited in a certain value, otherwise ν± have no real solution. 
When ν𝑥+ ν𝑦 = 𝑛, 𝑛 is the integer, 𝐶𝑜𝑠2πν𝑥= 𝐶𝑜𝑠2πν𝑦, 𝑆𝑖𝑛2πν𝑥= −𝑆𝑖𝑛2πν𝑦, 
𝑘2𝛽𝑥𝛽𝑦𝑆𝑖𝑛2πν𝑥𝑆𝑖𝑛2πν𝑦≦0, ν± have no real solution. This is called the sum resonance, the stop band 
width is the distance with the integer part of ν𝑥+ ν𝑦, or

ν𝑥+ ν𝑦-n=2 ∆ν𝑠𝑏, ∆ν𝑠𝑏 ≈
|𝑘|

4π
𝛽𝑥𝛽𝑦

When ν𝑥 − ν𝑦 = 𝑛, 𝑛 is the integer, 𝐶𝑜𝑠2πν𝑥= 𝐶𝑜𝑠2πν𝑦, 𝑆𝑖𝑛2πν𝑥= 𝑆𝑖𝑛2πν𝑦, ν± have the real solution. 

But the amplitude will increase to 𝑘2𝛽𝑥𝛽𝑦 + 1, this is called as the difference resonance.

Cos2 Sin 2 Sin 2 0 0

Sin 2 Cos2 Sin 2 0 0

0 0 Cos2 Sin 2 Sin 2

0 0 Sin 2 Cos2 Sin 2

x x x x x

x x x x x

y y y y y

y y y y y

    

    

    

    

+ 
 

− − 
 +
  − − 
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Coupling coefficient and emittance beating
(耦合系数与发射度跳动)

From the eq.(14), one can write it as 𝜈± =
𝜈𝑥+𝜈𝑦

2
±

(𝜈𝑥−𝜈𝑦−𝑛)2

4
+ ∆𝜈𝑠𝑏

2 , 

∆𝜈𝑠𝑏is the stopband width, it is the minimum difference value of the two 
eigen-tunes, sometimes referred to as the coupling coefficient. 

The coupled x-y motion allows the two beam emittances ε𝑥 and ε𝑦 to 
exchange. The unperturbed emittances are no longer constant of the 
motion, the two emittance will exchange slowly near the difference 
resonance, the beating frequency is the difference of the two eigen-
tunes

𝜈+ − 𝜈− = 2
(𝜈𝑥−𝜈𝑦−𝑛)2

4
+ ∆𝜈𝑠𝑏

2
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Linear x-y coupling due to solenoid(螺线管磁铁的线性耦合)

Body field Solenoids are another important element that couple x and y. The equation

of motion in a uniform solenoidal field 𝐵0 Ƹ𝑧 is given by 𝑚γ ሶԦ𝑣 = 𝑒 Ԧ𝑣 × 𝐵0 Ƹ𝑧, 

so ሶ𝑣𝑥 =
𝑒𝐵0

𝑚γ
𝑣𝑦, ሶ𝑣𝑦 = −

𝑒𝐵0

𝑚γ
𝑣𝑥, and 𝑣𝑥

′ = 𝐾𝑣𝑦, 𝑣𝑦
′ = −𝐾𝑣𝑥, with 𝐾 =

𝑒𝐵0

𝑚γ
, 

Therefore 𝑥′′ = 𝐾𝑦′ and 𝑦′′ = −𝐾𝑥′.

Let 𝑢 = 𝑥 + 𝑖𝑦, then 𝑢′′ = −𝑖𝐾𝑢′, so 𝑢′ 𝑠 = 𝑢′ 0 𝑒−𝑖𝐾𝑠, 

and 𝑢 𝑠 = 𝑢 0 + 𝑖
𝑢′ 0

𝐾
（𝑒−𝑖𝐾𝑠 − 1）, Therefore one can get its transfer matrix,

Note that this is not symplectic. We need calculate the contribution of the end fields, the 
details see in Gang XU, PRAB, VOLUME 7,044001(2004)

Sin 1 Cos
1 0

0 Cos 0 Sin

1 Cos Sin
0 1

0 Sin 0 Cos

KL KL

K K

KL KL

KL KL

K K

KL KL

− 
 
 
 
 −

− 
 
 − 

50



The edge effect at entrance and exit are respectively

and 

The total solenoid matrix is therefore 

𝑀𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 = 𝑀𝑒𝑥𝑖𝑡𝑀(𝐿|0)𝑀𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒=

𝐶 = 𝐶𝑜𝑠𝐾𝐿, 𝑆 = 𝑆𝑖𝑛𝐾𝐿

1 0 0 0

0 1 0
2

0 0 1 0

0 0 1
2

K

K

 
 
 −
 
 
 
 
 
 

1 0 0 0

0 1 0
2

0 0 1 0

0 0 1
2

K

K

 
 
 
 
 
 
 
− 

 

1 1 C

2 2

1 (1 )

4 2 4 2

1 C 1 S

2 2

(1 ) 1

4 2 4 2

C S S

K K

KS C K C S

S C

K K

K C S KS C

+ − 
 
 

+ − − −
 
 

− + − −
 
 − +
 − − 
 
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Rotation(转动)

Rotation is the transformation of x-y rotation

The rotation 𝑋 =
𝐶𝑜𝑠𝛳 𝑆𝑖𝑛𝛳

−𝑆𝑖𝑛𝛳 𝐶𝑜𝑠𝛳
𝑥
𝑦

, 𝑌 =
𝐶𝑜𝑠𝛳 −𝑆𝑖𝑛𝛳
𝑆𝑖𝑛𝛳 𝐶𝑜𝑠𝛳

𝑥
𝑦

And the angle 𝑋′ and 𝑌′ are the same. 

For the magnet rotation, the 𝑥 − 𝑦 motions are consisted of the 
entrance and exit. At the entrance the coordinate rotates angle𝛳, at 
the exit the coordinate rotates angle −𝛳, so the total matrix is

𝑇𝑟𝑜𝑡𝑎𝑡𝑒 = 𝑅−1𝑇𝑅, in 4-D phase space, 𝑅 is 

Cos 0 Sin 0

0 Cos 0 Sin

Sin 0 Cos 0

0 Sin 0 Cos

 

 

 

 

− 
 

− 
 
 
 
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If T is uncoupled with 
𝑇𝑥 0
0 𝑇𝑦

, and 𝑇𝑥 and 𝑇𝑦 is 2 × 2 maps then 

𝑇𝑟𝑜𝑡𝑎𝑡𝑒 =
𝑇𝑥𝐶𝑜𝑠2𝛳 + 𝑇𝑦𝑆𝑖𝑛2𝛳 −(𝑇𝑥−𝑇𝑦)𝑆𝑖𝑛𝛳𝐶𝑜𝑠𝛳

−(𝑇𝑥−𝑇𝑦)𝑆𝑖𝑛𝛳𝐶𝑜𝑠𝛳 𝑇𝑥𝑆𝑖𝑛2𝛳 + 𝑇𝑦𝐶𝑜𝑠2𝛳

When 𝑇𝑥= 𝑇𝑦, the rotation does not change the map. For the thin 

length quadrupole, 𝑇𝑥= 
1 0

−
1

𝑓
1 , 𝑇𝑦= 

1 0
1

𝑓
1 ,

𝑇𝑟𝑜𝑡𝑎𝑡𝑒 =

1 0 0 0

Cos2 Sin 2
1 0

0 0 1 0

Sin 2 Cos2
0 1

f f

f f

 

 

 
 
 −
 
 
 
 
 
 
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Nonlinear resonance(非线性共振)
Nonlinear perturbations have no exact solutions in general. Consider a thin-length perturbation is 
very weak, we can do some calculation. 

Nonlinear 1-D resonanceLet us consider the nonlinearity give Δ𝑥′ ∝ 𝑥𝑚, the equation of motion 

will look like 
𝑑2η

𝑑θ2 + ν2η = εη𝑚δ(θ), δ(θ) is a periodic δ function with period 2π in θ. m=2 for 
sextupole, and m=3 for 

octupole, when ε= 0,  η~ቊ
𝑆𝑖𝑛 νθ
𝐶𝑜𝑠 νθ

, when ε ≠ 0 the perturbation ~ቊ
δ(θ)𝑆𝑖𝑛𝑚 νθ

δ(θ) 𝐶𝑜𝑠𝑚 νθ
, 

nonlinearity m ν=K ν=K/2 ν=K/3 ν=K/4 ν=K/5

dipole 1 XX

quadrupole 2 XX

sextupole 3 X XX

octupole 4 X XX

decapole 5 X X XX

Nonlinear 1-D resonances driven by nonlinearities of varies order
XX means lowest order and strongest resonance, X means is driven 

54



Multiturn closed orbit(多圈闭轨)

In a linear system, multiturn closed orbit requires 𝑀𝑚 = 𝐼, the tune 

ν must be an exact rational number, or ν= 
𝐾

𝑚
, both 𝐾 and 𝑚 are 

integer. The situation change when nonlinearities are introduced. 
Under this case, the orbit is depend on the initial condition, and it is 
not linear relation, it is nonlinear relation. The solutions may not be 
unique. More over, the multiturn orbit may be not a stable orbit, 
this means around the orbit have no other particle except the ideal 
particle self. For the stable orbit, it is a island on the phase space. 
Different turns will lead to different islands. To get these islands one 
can do particles tracking. The centers of the islands constitute the 
multiturn closed orbit(COD)
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Nonlinear coupling resonance(非线性耦合共振)
In a 2-D case, a resonance occur 

when 𝑚𝑥ν𝑥 + 𝑚𝑦ν𝑦 = 𝑛, where 𝑚𝑥

and 𝑚𝑦 are integers. The order of  
the resonance is given by 

|𝑚𝑥|+|𝑚𝑦|. The figure shows the 
resonances up to 8th order.

One have to select the working 
point to avoid some resonance. In 
general, the integer and half integer 
resonance must be avoided, and 
then sum resonance, because the 
beam will lose due to these 
resonance.
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Chromatic effect(色品效应)

Dispersion function(色散函数)

Momentum error（动量误差）

In the beam, the particles have different energy and also the momentum. 
They have different trajectories in banding magnets, the momentum 
deviation ∆𝑃 = 𝑃(1 + δ), the ratio is 1 + δ. 

The energy ratio is 
∆𝐸

𝐸
=

𝛽0
2

1+𝛽0
2δ

∆𝑃

𝑃
= 𝛽0

2(1 + δ), for high energy electron 

machine 𝐸 = 100𝑀𝑒𝑉, γ=100/0.51099891=195.695,β0 = 0.999987, β0
2= 

0.999974=1, so 
∆𝐸

𝐸
=

∆𝑃

𝑃
= 1 + δ

For the proton machine, for example CSNS, E=1.6GeV, γ≈1.7, β ≈0.808
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Equation of motion

According to eq.(3), the equation of motion with momentum deviation is 

𝑥″ −
ρ+𝑥

ρ2 =
e𝐵𝑦

𝑃0 1+𝛿
(1 +

𝑥

ρ
)2 (16)

Keep the first order about 𝑥 and δ we can have 
𝑑2𝑥

𝑑𝑠2 + (
𝐺

𝐵ρ +
1

ρ2) 𝑥= 
𝛿

ρ(𝑠)
, the right hand 

𝛿

ρ(𝑠)
will 

drive the x-motion of an off-momentum particle, it is called horizontal dispersion. Solve this 
equation, one can set the solution x s = 𝑥β 𝑠 + 𝐷(𝑠)δ, substituting in the equation one can 
get 𝐷′′ + 𝐾𝑥 𝑠 𝐷 =

1

ρ
, 𝐾𝑥 𝑠 =

𝐺

𝐵ρ +
1

ρ2, the equation have the general solution 𝐷(𝑠) =

𝑐1 𝑆𝑖𝑛 𝜋ν𝑠 + 𝑐2 𝐶𝑜𝑠 𝜋ν𝑠 + 𝑐3, and 𝑐1, 𝑐2, 𝑐3 to be determined.

𝑥β 𝑠 = 𝑠׬

𝑠+𝐿
𝑑𝑠

′
∆𝐵 𝑠′

𝐵ρ
𝛽 𝑠 𝛽 𝑠′

2𝑆𝑖𝑛πν
Cos(πν − |Ψ 𝑠′ − Ψ(𝑠)|) , this is the solution of eq.(13) , 𝑐3 is 

to be determined. 

A simplest solution is 𝑥 = 𝐷δ, 𝐷 is a constant, it means the orbit is a circle, the radius of the 
orbit is proportional the beam energy.
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High order dispersion(高阶色散函数)
Let 𝑥 s = 𝑥β 𝑠 + 𝐷1 𝑠 δ + 𝐷2 𝑠 δ2, one can get 𝐷2 𝑠 , it is the 2nd dispersion, in 
principle one can get higher than 3rd dispersion. The 2nd dispersion satisfy the 
following equation:

𝐷2
′′ + (

𝐺

𝐵ρ
+

1

ρ2
)𝐷2 = −

1

ρ
+ (

𝐺

𝐵ρ
+

2

ρ2
)𝐷1

Dispersion-free storage ring(无色散储存环)
A special case is when there is electric field in the ring, the equation of motion as 
𝑑2𝑥

𝑑𝑠2 + (
𝐺

𝐵ρ +
1

ρ2) 𝑥= 
1

ρ
+

−𝑒𝑣𝑠𝐵𝑦+𝑒𝐸𝑥

𝑚𝛾𝑣𝑠
2 , the momentum error δ, the velocity 𝑣𝑠 ≈ 𝑣𝑠0(1 +

δ

γ2), 𝑣𝑠0 

is the designed velocity. Let 𝐵𝑦= 𝐵𝑦0 + 𝐺𝑥 and set bending radius satisfying 
1

ρ
=

−𝑒𝐵𝑦0

𝑃0
−

𝑒𝐸𝑥

𝑃0𝑣𝑠0
, 

keeping first order in 𝑥 and δ, one can get 𝑥′′ + 𝐾𝑥𝑥 = (
1

ρ
−

𝑒𝐸𝑥

𝑃0𝑣𝑠0γ2)𝛿, the dispersion function 

satisfies 𝐷′′ + 𝐾𝑥𝐷 =
1

ρ
−

𝑒𝐸𝑥

𝑃0𝑣𝑠0γ2. If we choose 
𝑒𝐸𝑥

𝑃0
=

𝑣𝑠0γ2

1+γ2

𝑒𝐵𝑦0

𝑃0
= 

𝑣𝑠0γ2

ρ
, the storage ring will be 

dispersion free. 
The ring consists of a set of high voltage plates surround combined bending magnets.
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Calculation of dispersion function(色散函数的计算)
The 3 × 3 matrix formalism
Consider a separated-function storage ring, the bending radius of the sector 
dipole is ρ, let the initial dispersion function 𝐷 0 , 𝐷′(0), 

𝐷(𝑠) satisfy the following equation 𝐷′′(𝑠) +
𝐷(𝑠)

ρ2 =
1

ρ
, ρ is a constant, the solution is

𝐷(𝑠)

𝐷′ (𝑠)
=

𝐶𝑜𝑠
𝑠

ρ
ρ𝑆𝑖𝑛

𝑠

ρ

−
1

ρ
𝑆𝑖𝑛

𝑠

ρ
𝐶𝑜𝑠

𝑠

ρ

𝐷(0)

𝐷′ (0)
+ 

ρ(1−𝐶𝑜𝑠
𝑠

ρ
)

𝑆𝑖𝑛
𝑠

ρ

Introduce a vector 
𝐷
𝐷′
1

, the transfer matrix can be written as a 3 × 3 map, 

𝐷(𝑠)

𝐷′(𝑠)
1

= 

𝐶𝑜𝑠
𝑠

ρ
ρ𝑆𝑖𝑛

𝑠

ρ
ρ(1 − 𝐶𝑜𝑠

𝑠

ρ
)

−
1

ρ
𝑆𝑖𝑛

𝑠

ρ
𝐶𝑜𝑠

𝑠

ρ
𝑆𝑖𝑛

𝑠

ρ

0 0 1

𝐷(0)

𝐷′(0)
1

. 
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For a short sector bend, 𝜃 =
𝑙

ρ
≪ 1, the matrix can be written as 

1 𝑙
𝑙𝜃

2

0 1 𝜃
0 0 1

. 

The upper-left 2 × 2 is a drift space. It can be written as two drifts insert a 
thin-length kick as 

1 𝑙/2 0
0 1 0
0 0 1

1 0 0
0 1 𝜃
0 0 1

1 𝑙/2 0
0 1 0
0 0 1

= 
1 𝑙

𝑙𝜃

2

0 1 𝜃
0 0 1

The quadruple can be written as 
𝑚11 𝑚12 0
𝑚21 𝑚22 0

0 0 1
, upper-left 2 × 2 use for 

calculating the betatron map.
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General expression of the 3 × 3 map(3 × 3映射的一般表达式)
In general, if the 3 × 3 one-period map around position s is given as 

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

0 0 1
.

The dispersion transfer equation is 
𝐷(𝑠 + 𝐿)

𝐷′(𝑠 + 𝐿)
1

=
𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23

0 0 1

𝐷(𝑠)

𝐷′(𝑠)
1

, the period condition 

require 

𝐷(𝑠 + 𝐿)= 𝐷(𝑠), 𝐷′(𝑠 + 𝐿)= 𝐷′(𝑠),  note that determinant 𝑚11 𝑚22- 𝑚12 𝑚21 = 1, one can get

𝐷(𝑠)= 
𝑚13 1−𝑚22 +𝑚12𝑚23

2−𝑚11−𝑚22
, 𝐷′(𝑠)= 

𝑚13𝑚21+𝑚23(1−𝑚11)

2−𝑚11−𝑚22
. 

This result can be used to calculate dispersion function at any position. Substitute 

𝑚11= 𝐶𝑜𝑠ϕ + 𝛼𝑆𝑖𝑛ϕ,𝑚12 = 𝛽𝑆𝑖𝑛ϕ, 𝑚21 = −γ𝑆𝑖𝑛 ϕ, 𝑚22= 𝐶𝑜𝑠ϕ − 𝛼𝑆𝑖𝑛ϕ into the equation, 

one can get

𝐷(𝑠)= 
1

2
(𝑚13 + 𝛼𝑚13 + 𝛽𝑚23𝐶𝑜𝑡

ϕ

2
), 𝐷′(𝑠)= 

1

2
(𝑚23 − γ𝑚13 + 𝛼𝑚23𝐶𝑜𝑡

ϕ

2
),  

Where 𝛼, 𝛽, γ are twiss parameters at s. Alternatively, one can solve 𝑚13 and 𝑚23 in terms of 𝐷 and 𝐷′, 
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then  we have

𝐶𝑜𝑠ϕ + 𝛼𝑆𝑖𝑛ϕ 𝛽𝑆𝑖𝑛ϕ 1 − 𝐶𝑜𝑠ϕ − 𝛼𝑆𝑖𝑛ϕ 𝐷 − 𝛽𝐷′𝑆𝑖𝑛ϕ

−γ𝑆𝑖𝑛 ϕ 𝐶𝑜𝑠ϕ − 𝛼𝑆𝑖𝑛ϕ γ𝐷𝑆𝑖𝑛ϕ + (1 − 𝐶𝑜𝑠ϕ + 𝛼𝑆𝑖𝑛ϕ)𝐷′

0 0 1

, 

One can also get the transfer relation of the dispersion,

𝐷(𝑠2)

𝐷′(𝑠2)
1

=𝑀(𝑠2|𝑠1)
𝐷(𝑠1)

𝐷′(𝑠1)
1

, and the transfer matrix 3 × 3 from 𝑠1 to 𝑠2, 

𝑀(𝑠2 𝑠1 =
𝑚11 𝑚12 𝐷2 − 𝑚11𝐷1 − 𝑚12𝐷1

′

𝑚21 𝑚22 𝐷2
′ − 𝑚21𝐷1 − 𝑚22𝐷1

′

0 0 1

, 

where 𝑚11= 
𝛽2

𝛽1
(𝐶𝑜𝑠ψ + α1𝑆𝑖𝑛ψ), 𝑚12= 𝛽1𝛽2𝑆𝑖𝑛ψ, 𝑚21 =

α1−α2

𝛽1𝛽2
𝐶𝑜𝑠ψ-

1+α1α2

𝛽1𝛽2
𝑆𝑖𝑛ψ, 

𝑚22 =
𝛽1

𝛽2
(𝐶𝑜𝑠ψ − α2𝑆𝑖𝑛ψ), ψ is the phase advance from 𝑠1 to 𝑠2.
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Dispersion suppressor(消色散节)
In accelerator design, the dispersion free section is necessary for many 
purpose, interaction point, RF cavity, injection point for collider, insertion 
device for light source. For light source there are DBA, TBA, QBA, 7BA, 
MBA structures to make dispersion free. In principal, using two banding 
magnets, at least one quadrupole magnets and enough drift space can 
make both the dispersion and dispersion angle to 0, such structure can 
be called dispersion suppressor. Let one quadrupoles between two 
bands, the structure is (𝐵2, 𝐿2, 𝑄, 𝐿1, 𝐵1), the total transfer map is

𝑀 =

𝐶𝑜𝑠θ2 ρ2𝑆𝑖𝑛θ2 ρ2(1 − 𝐶𝑜𝑠θ2)

−
1

ρ2
𝑆𝑖𝑛θ2 𝐶𝑜𝑠θ2 𝑆𝑖𝑛θ2

0 0 1

1 𝐿2 0
0 1 0
0 0 1

𝐶𝑜𝑠 𝐾𝐿𝑞

1

𝐾
𝑆𝑖𝑛 𝐾𝐿𝑞 0

− 𝐾𝑆𝑖𝑛 𝐾𝐿𝑞 𝐶𝑜𝑠 𝐾𝐿𝑞 0

0 0 1

1 𝐿1 0
0 1 0
0 0 1

𝐶𝑜𝑠θ1 ρ1𝑆𝑖𝑛θ1 ρ1(1 − 𝐶𝑜𝑠θ1)

−
1

ρ1
𝑆𝑖𝑛θ1 𝐶𝑜𝑠θ1 𝑆𝑖𝑛θ1

0 0 1
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The initial dispersion (𝐷0, 𝐷0
′ ), the finale dispersion is (0,0), one can 

solve the equation about (𝐿1, 𝐿2) 
𝐿1 =
(𝜌1𝐶𝑜𝑠θ1( 𝐾 −𝐷0 + ρ1 + 𝐷0

′ 𝐶𝑜𝑡 𝐾𝐿𝑞 − (𝐷0
′ 𝐾ρ1

2

+ (𝐷0−ρ1))𝐶𝑜𝑡 𝐾𝐿𝑞)𝑆𝑖𝑛θ1 + 𝜌1(− 𝐾𝜌1 + 𝐶𝑠𝑐 𝐾𝐿𝑞𝑆𝑖𝑛θ2))

/(𝐷0
′ ρ1𝐶𝑜𝑠θ1 + (𝐷0 + ρ1)𝑆𝑖𝑛θ1),

𝐿2 =
𝐶𝑜𝑡 𝐾𝐿𝑞

𝐾
+ ρ2𝐶𝑜𝑡θ2 − (𝐶𝑠𝑐 𝐾𝐿𝑞𝐶𝑠𝑐θ2(−𝐷0

′ ρ1𝐶𝑜𝑠θ1 + ρ1ρ2 𝐾𝑆𝑖𝑛 𝐾𝐿𝑞

+ 𝐷0 − ρ1 𝑆𝑖𝑛θ1)/ 𝐾ρ1

Usually, 𝐵1 and 𝐵2 are the same, the length of two drift are equal .ie. 
𝐿1= 𝐿2, one can get the expression of 𝐿1 and 𝐾 in 𝐷0, 𝐷0

′ ,
ρ1, ρ2, θ1, and 𝐿𝑞. They are too long and complicate, here omitted.
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Momentum Compaction(动量压缩)
• Path length
• The particle with lower energy will have a smaller bending radius(E=0.3Bρ), the 

circumference of motion will be different to the ideal particle. The difference for a 
sector dipole is ∆C = ρ + 𝑥 θ − ρθ = 𝑥θ. For rectangular dipole, the path length 
difference is ∆C = 2𝑥𝑇𝑎𝑛

θ

2
.

• Comparing 𝑥θ，2𝑥𝑇𝑎𝑛
θ

2
, one can get the difference 𝑥 θ − 2

θ

2
+

θ

2

3

3
= 𝑥

θ3

12
, it is 

3rd small quantity.
• The change in circumference due to the

horizontal closed orbit distortion is 

∆C = ׯ
𝑥𝐶𝑂𝐷(𝑠)

𝜌(𝑠)
𝑑𝑠

It is the integral of all bends over the
   storage ring.

66



Momentum compaction factor(动量压缩因子)

Due to the momentum deviation δ of particle, the particle will have 
a horizontal displacement, ∆𝑥(𝑠) = δ 𝐷(𝑠), the total over the ring is 

∆𝐶 = δ ර
𝐷(𝑠)

𝜌(𝑠)
𝑑𝑠

The momentum compaction factor 𝛼𝑐 is defined by
∆𝐶

𝐶
= 𝛼𝑐δ or 𝛼𝑐= 

1

δ

∆𝐶

𝐶
= 

1

𝐶
ׯ 

𝐷(𝑠)

𝜌(𝑠)
𝑑𝑠

In general, 𝛼𝑐>0. Sometimes by special design a negative 
momentum compaction lattice can be designed. 
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Achromat cell(消色散单元)
The most simple achromat cell is consisted of two bending magnets it is 
called as double bend achromat(DBA). A achromat cell start from and end to 
𝐷 = 0, 𝐷′ = 0. More than two bending magnets can give more flexible 
achromat structure, and the lattice will give lower natural emittance, more 
bands much more lower, these structures are used in the lattice design for 
light source accelerator. The detail will study in the lesson of lattice design.
A DBA consists of 𝐵, 𝐿, QF, 𝐿, 𝐵, where 𝐵 is a bend with bending angle θ, 𝐿 is 
a drift with length 𝐿, QF is a horizontal focusing 

quadrupole with focusing length 𝑓 =
𝐿

2
, the 

dispersion at QF is 𝐷𝑄𝐹 = 𝐿θ. In practice,
a DBA cell is more complicated, at least the 
defocusing quadrupole is necessary for stabilizing
the particle motion in vertical plane.
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Chromaticity(色品)

A quadrupole has focusing or defocusing force. Higher momentum particles 
δ > 0  have higher rigidity, and weaker effect due to magnetic field. We have 

known dispersion is the result of weakened dipoles. The similar thing for 
quadrupole is that the betatron tune will depend on the momentum δ, keep 
the first order perturbation,

ν𝑥,𝑦 δ = ν𝑥,𝑦 0 + ξ𝑥,𝑦δ, where ξ𝑥,𝑦 are the chromaticities. 

(In Europe the definition is different!!!)

The equation of the motion(Eq.(16)) is

𝑥″ −
ρ+𝑥

ρ2 =
e𝐵𝑦

𝑃0 1+𝛿
(1 +

𝑥

ρ
)2≈

e𝐵𝑦

𝑃0
1 − 𝛿 (1 +

2𝑥

ρ
) or

𝑥″ + 𝐾𝑥𝑥 =
𝛿

ρ
+

2

ρ2 +
𝐺

𝐵ρ
𝑥𝛿, 

𝛿

ρ
is the dispersion term. 𝐾𝑥 term has a quadrupole error ∆𝐾𝑥= -

2

ρ2 +
𝐺

𝐵ρ
𝛿
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For the vertical plane, ∆𝐾𝑦= 
𝐺

𝐵ρ
𝛿. The effects should be integrated 

for all quadrupoles,

ξ𝑥,𝑛𝑎𝑡 = −
1

4π
ׯ 𝑑𝑠 β𝑥 𝑠 [

2

ρ2(𝑠)
+

𝐺(𝑠)

𝐵ρ
] ≈ −

1

4π
ׯ 𝑑𝑠 β𝑥 𝑠

𝐺(𝑠)

𝐵ρ
, 

the 
2

ρ2(𝑠)
term much less than 

𝐺(𝑠)

𝐵ρ
, omitted. 

But for weak focusing ring this approximation should not be made.

ξ𝑦,𝑛𝑎𝑡 =
1

4π
ׯ 𝑑𝑠 β𝑦 𝑠

𝐺(𝑠)

𝐵ρ
, 

they are noted by 𝑛𝑎𝑡 indicate they are the natural chromaticities.

The natural chromaticities are negative in both horizontal and 
vertical plane, that is because the focus force with higher 
momentum is weaker than on momentum. In contrast, tune shifts in 
x and y planes from the quadrupole field error have opposite signs.
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Chromaticity correction(色品校正)
The particles have different momentum, it will lead to a tune spread ξδ(ξ=-30, 
δ=1%, ξδ=0.3) and further the particles will cross dangerous nonlinear 
resonance. On the other hand, negative   natural chromaticities will lead head-
tail instability, the nagetive chromaticities have to be corrected above 0 a little. 
The way to correct chromaticities is to use sextupoles. Unfortunately, sextupoles
will bring nonlinear effects for example dynamic aperture problems, people 
have to do something to make the balance between chromaticity correction 
and nonlinear effects. In order to correct the horizontal and vertical 
chromaticities we need the two-family sextupole. A sextupole magnet has fields

𝐵𝑥 = 𝑆𝑥𝑦, 𝐵𝑦 =
𝑆

2
(𝑥2 − 𝑦2),

where 𝑆 =
𝜕2𝐵𝑥

𝜕𝑥2  is the strength of the sextupole. 

An off-momentum particle passing through the sextupole has displacements 
𝑥 = 𝑥𝛽 + 𝐷δ, 𝑦 = 𝑦𝛽,𝛽 means the betatron component of the displacement, 
which is δ-independent. The fields seen by particles are

𝐵𝑥 = 𝑆𝑥𝛽𝑦𝛽 + 𝑆𝑦𝛽𝐷δ, 𝐵𝑦 =
𝑆

2
𝑥𝛽

2 − 𝑦𝛽
2 + 𝑆𝑥𝛽𝐷δ +

𝑆

2
𝐷2δ2, 
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the term of 𝐷 relative linear parts are 

𝐵𝑥 = 𝑆𝑦𝛽𝐷δ, 𝐵𝑦 = 𝑆𝑥𝛽𝐷δ, 

It shows that the sexupole must be placed at the position where 𝐷 ≠ 0. 
they are quadrupole-like terms. 

∆ν𝑥 =
1

4𝜋
ර 𝑑𝑠

𝑆 𝑠

𝐵𝜌
𝛽𝑥(𝑠)𝐷(𝑠)δ

∆ν𝑦 =
1

4𝜋
ර 𝑑𝑠

𝑆 𝑠

𝐵𝜌
𝛽𝑦(𝑠)𝐷(𝑠)δ

Combined the natural and sextupoles chromaticityies, we can get

ξ𝑥=-
1

4𝜋
ׯ 𝑑𝑠 β𝑥 𝑠 [

2

ρ2 𝑠
+

𝐺 𝑠

𝐵ρ
−

𝑆 𝑠

𝐵𝜌
𝐷(𝑠)]

ξ𝑦= 
1

4𝜋
ׯ 𝑑𝑠 β𝑦 𝑠 [

𝐺 𝑠

𝐵ρ
−

𝑆 𝑠

𝐵𝜌
𝐷(𝑠)]
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Dynamic aperture(动力学孔径)

Consider a particle moving along the closed orbit with design momentum. If there is no sextupole, 
due to the natural chromaticity its momentum deviation must be less than a small value, in order to 
increase the acceptance of the momentum, sextupoles are adopted to decrease the chromaticities
in horizontal and vetical planes. The instability require the chromaticities must be above 0 a little. 

This is a contradiction, but we must accept it. Digital tracking in 6D phase space can seek the 
dynamic aperture(DA). Some clever arrangements can increase the DA, for example, -I structure, 
the detail see in Gang XU, PRAB, 8,104002(2005),

The following picture shows some other different structure. 

Unfortunately -I is an approximation on the 2nd order level, it is

based on thin length approximation. In the 3rd order it has 

some remnants. Deal with the remnants one can use more 

sextupoles or octupoles even higher order multipoles. You 

can not do this infinitely due to limited space. 

More over, there are many thing affect beam motion for examples 

the oscillating perturbation from ground vibration, power supply 

ripple, noise from RF, cooling water, etc.
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