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Accelerator physics is about the laws of charged particles moving in the electromagnetic

fields of the accelerator machine and the charged particles themselves. Two aspects of the
physics are most important:

B Stability: How to keep a particle be accelerated continuously and stably on its orbit?
-The highest energy.

M Longitudinal dynamics: the principle of phase stability
M Transverse dynamics:  the alternative gradient focusing and its stability

B Instability: How to keep as many as particles be accelerated? -The threshold current.

M The collective effects



2.1 Longitudinal dynamics

The movement along the designed trajectory s is the longitudinal
motion of the particle.

The voltage of the particle experience traversing the rf cavity is

V(1) = VO Sin(a)rft + ¢S)’ with Wyr = ha)o T~ o

Vo

The designed trajectory

The synchronous phase ¢S id defined as the RF phase seen by the

idealized synchronous particle as it traverse the cavity. This

means the accelerating voltage seen by the synchronous particle,
turn by turn, is

V.= V,sin(¢,)




The longitudinal coordinates: (¢, AE)and (z,0)
energy of of a particle relative to the synchronous particle, 1

AE=E-E

and the RF phase at the arrival time of the particle ¢
AP 1 AE
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Energy variation:

In the adiabatic approximation, the rate of change of AE,
due to the RF acceleration is given by

: 0,
AE = eVy—(sin ¢ — sin ¢,) 0,
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Phase variation:

 AC Av 0
With — = a0 and — = —, we have
C, Uy !s .
¢ — a)rfné
1 1
where 1 = a, 5 the phase slippage factor, and momentum compaction factor a,. = ESI;
Vs

Here the dispersion function D(s) is defined as x(s) = D(s)0.

Synchrotron oscillation:
: ON
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Stability condition:
ncos g, <0
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Transition energy:

The longitudinal stability condition: 7 cos ¢, < 0 and
1

yZ

The transition energy: y, =

n= o

1

Ve
Wheny =y, n = 0.

When y > 7,, 1 > 0, the stable phase at cos ¢, < 0.
When y <7, 1 <0, the stable phase at cos ¢, > 0.
The phase stability also requires to choose ¢, = 0 for
n<0,¢,=nfory >0

For electron synchrotron, the transition energy is about
5MeV, and for proton about 9 GeV.
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RF buchet:
The Hamiltonian to describe the longitudinal motion:

H,6,1) = —hargsd + ~—22 [cos b — cos , + (¢ — ,)sin ]
,0,1) = —nw | COS @ — COS @, — ¢J)sm @, |.
o o 2nf2E,
The Hamilton equation gives:
¢ O — heod
= — = NQ)
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For each H(¢, 0) , we can draw a curve on the (¢, 0) plane.
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2.2 Transverse dynamics

Transverse dynamics is to study the particle movement at the xy
plane. x is the radial direction, and y is the axial direction. Along the
particle moving at the orbit, the xy plane is also changing.

With the definition of a 6-dimensional coordinate (x, X', y, y’, z, 0),
when the particle moving from position s, to s, , its coordinate

changes 1o (X5, X5, V5, V5, 23, O9).

'x2 'xl mll m12 O O O O
0 0 0 0

y? =M y} cand M = a3 T

Y2 Y1 0O 0 my; my 0 O

2 <1 0 0 0 0 mss ms

0y 0y 0 0 0 0 mg me

is a 6 X 6 matrix, called transfer matrix. Here we assume that xyz
Is decoupled from each other. We then can deal with x,y,z separately
now.




Transfer matrix: (x-direction)

1) Thin-lens focusing and defocusing quadruples: M, = [

2) Thick-lens focusing quadruple: M, . =

3) Thick-lens defocusing quadruple: M, = VK

—\/E sinh \/ES cosh \/Es

4) Drift of length d:Mdrw: [(1) Cll]

1 .
——sin@ cosd

5) Sector dipole: M (s]|0) = [
P

cosfd psind ]
, 0




Transfer matrix of a beam line:

The transfer matrix from s1 to s2 :

A one-turn map: M(s + C|s)

For a ring consists of p identical sections of length L,
the one-turn map can be written as

M(s + C|s) = MP(s+ L|s).

If the particle goes one turn and another position S’

downstream of the ring, the map will be
M(S"|SM(S + C|S).

Transverse stability:

Stability of particle motion in a ring, means that when a
particle with initial condition (x, X)) is mapped

repeatedly by one-turn map M(s + C|s) for m turns,
the resulting particle coordinates x and x’ remains

confined as m — 0. /
A0

Stabilty < M" [x’] = finiteas m — o



Properties of the one-turn matrix:
(MM(s+ Cls)=M(s|s —C)
2)detM(s + Cls) =1
(3)Tr M(s + C|s) is constant with s

The one-turn matrix can be written as
M(s + C|s) = Al + BJ(s), with

1 0 | als)  p(s)

= o 1]"’(”‘ —(s) —a<s>]'

A* + B*[—a*(s) + B(s)y(s)] = 1.
et

—a*(s) + p()y(s) = 1
Got
A*+B*=1.

L et

A =cosu,B =sinu.

cos U + a(s)sin u p(s)sin u
—y(s)sin u cosu — a(s)sinp|

The a, f, y are the Twiss parameters, or Courant-Snyder parameters. And

PNRES ﬁ(s)] [a<s> ﬁ(s)]z [_1 o] .
) [—ﬂs) —a@)| |-19) —a| "0 -1

M(s+ Cls)=1cosu+Jsinu = [



Transverse Stability Condition:

It can be proved that
M(s+ C|s)=1cosu+ Jsinu = explJ(s)u]
After m turns, the transfer matrix will be
M"(s + C|s) = exp[J(s)mu] = I cos(mu) + J(s)sin(mpu).

Only if u is real, M™(s + C|s) remains confined as m — 0.

The stable condition Is:
| TTM(s+Cls)| =M, +M,, =|2cosu| L2

® Definition: The matrix exponential function
If @ is an m X m matrix, then exp a is the m X m matrix defined by

expa=1+ Zaj/j!
j=1



Symplecticity Eigenvalues of matrix M

For a linear 1-D motion (2-D phase space) , the . L
symplecticity condition is the determinant of the 2x2 Let 0y, be the eigenvectors of M with eigenvalues ’11,2'
transfer matrix M must be equal to 1. Muv, = Ay, Mo, = 4,v,.

Construct two matrices:

For the n-D case, a linear motion can be described by
a 2n X 2n matrix. And the symplecticity condition: V=1[0, ] and A = [/11 O] o

) () 12 )
MSM = S, MV = VA

M = VAV~!

where and

» ZS S U

0 M
Q = O S.O O ,and S, = [ 01 (1)] Stability needs: |4,| < 1,and |4,| £ 1,
0 0 0 S,

For a linear 1-D system,

m;: — A m
detM — A= | " “ =22 MMA+1=0
My My, — A

where TTM = m; + m,,, and |A| < 1 for its two solutions if and only if
I TrTM| <2




An example: Periodical FODO structure of thin-lens approximation
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2——<2 $ Satisfied automatically




Homeworks:

1. Prove the transverse weak focusing condition, 0 < n < 1, for the magnetic fields B, (r) = BZ(rS)—n.
r

2. Derive the transfer matrix in a thick focusing quadrupole.

3. Describe the working principle of a Rhodotron, and try to give its synchronous condition.




