

Laser Accelerators at Peking University

Chen Lin

- 1. State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
- 2. Beijing Laser Acceleration Innovation Center, Huairou, Beijing 101400, China
- 3. Institute of Guangdong Laser Plasma Technology, Baiyun, Guangzhou 510540, China

Outline

- Institute of Heavy ion Physics@ Peking University
- Introduction to Laser Plasma Accelerator
- The Compact laser plasma accelerator (CLAPA-I and CLAPA-II)
- Summary

Outline

- Institute of Heavy ion Physics@ Peking University
- Introduction to Laser Plasma Accelerator
- The Compact laser plasma accelerator (CLAPA-I and CLAPA-II)
- Summary

Institute of Heavy ion Physics

4.5 MV Electrostatic — Defense & Nuclear Data

2×6 MV Tandem — Aerospace Chips & Nuclear Materials

Large-scale AMS Facility

Large-scale 2 K Cryogenic Circulating Liquid Helium System

Magnetic Resonance Imager

2×1.7 MV Tandem — Materials Research

Institute of Heavy ion Physics

Has set multiple "China' s firsts"

The first accelerator – based neutron source

The first domestically produced superconducting accelerator

The world's first 1% energy spread laser ion accelerator

991

1992

1994

2008

2017

2022

The first accelerator mass spectrometer

The first 1.3 GHz 9 cell superconducting cavity

Human

The first Chinese Human Connectome Project. (CHCP)

Laser Plasma Laboratory

■ The world's highest-average-power petawatt laser and its dedicated experimental platform.

Outline

- Institute of Heavy ion Physics@ Peking University
- Introduction to Laser Plasma Accelerator
- The Compact laser plasma accelerator (CLAPA-I and CLAPA-I)
- Summary

Challenge of Charged-Particle Accelerators

1930s: 10 cm diameter, 80 keV ions – the earliest cyclotrons

Vacuum breakdown limits the electric gradient to the order of tens of MV/m.

To reach higher energies, accelerator size and cost must keep increasing.

- ① Raising the accelerating gradient;
- ② Finding one medium that can withstand high gradients.

Laser can provide ultrahigh E field

•
$$I_0 = 10^{18-22} \text{ W/cm}^2$$

•
$$E_0 = \left(\frac{2I}{\varepsilon_0 c}\right)^{1/2} > 1-100 \text{ TV/m}$$

Millions times beyond conventional RF accelerators!

Can E_{laser} be used directly for acceleration?

How to use laser for acceleration?

The Lawson–Woodward theorem is a fundamental result concerning the acceleration of free particles in electromagnetic fields. It states that under certain conditions a free particle in vacuum cannot be accelerated by an electromagnetic wave:

- 1. The electron moves linearly at high energy.
- 2. The particle is far from any sources (dielectrics, conductors, plasmas).
- 3. No electrostatic or magnetostatic fields are present in the region.
- 4. Idea vacuum with no boundary conditions.
- 5. Nonlinear effects are neglected.

High gradient laser accelerator

Laser accelerators deliberately break these ideal conditions to circumvent the Lawson–Woodward prohibition.

- 1 Laser Vacuum Accelerator: inverse FEL/quasi-pondermotive acceleration....(break 1/3/5)
- ② Laser-induced THz accelerator: THz regime ($E \propto f^{1/2} au^{-1/4}$) (break 2/4)
- ③ Dielectric laser accelerator: integration with nanophotonic materials(break 2 /4)
- 4 Laser Plasma Accelerator: using plasma as the medium, combining high gradients with extended interaction lengths (break all!)

'Accelerator on a Chip'

Plasma and Its Advances

- > Plasma is the fourth state of matter, accounting for 99 % of the visible universe.
- ➤ It is not subject to electrical breakdown thresholds.
- > Plasma can sustain extreme temperatures, currents, and electromagnetic fields.
- Composed of charged particles, it can be controlled over long distances by electromagnetic fields.

LPA was first proposed in 1979

$$E_0(V/m) \approx 96\sqrt{n_0(cm^2)}$$

$$n_0 = 10^{18} \text{ cm}^{-3} \quad \Longrightarrow \quad E_0 \approx 96 \text{ GV/m}$$
 $L_d = 1 \text{ cm} \quad \Longrightarrow \quad E_{electron} \approx 1 \text{ GeV}$

Volume 43, Number 4

PHYSICAL REVIEW LETTERS

23 July 1979

Laser Electron Accelerator

T. Tajima and J. M. Dawson

Department of Physics, University of California, Los Angeles, California 90024

(Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18}W/cm^2 shone on plasmas of densities 10^{18} cm^{-3} can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulsers are examined.

Laser wakefield acceleration

$$\mathbf{F}_p = -m_e c^2 \nabla (a^2/2)$$

The term "ponderomotive" derives from the Latin word *pondero*, meaning "to weigh" or "to measure," and the Greek root *motive*, signifying "motion" or "driving." Together, *ponderomotive* denotes a force that drives and imparts motion to objects.

In 2019, LBNL accelerated electrons to 7.8 GeV using a 20-cm-long discharge capillary channel.

The picture of laser ion acceleration

- > Because ions are much heavier, they cannot be directly driven by the laser;
- ➤ Ion acceleration relies on the electrostatic field arising from electron—ion charge separation within the plasma.

Bimulation of laser acceleration Physics process

Bimulation of laser acceleration Physics process

The setup of laser ion accelerator

Laser parameters:

• Energy: 1.8J

Duration: 30fs

• Intensity: 8.3×10¹⁹ W/cm²

• Spot size: 4.5µm×5.3µm (FWHM)

20μm

Target parameters:

Mirco-thickness solid foil

Characteristics of Laser Accelerated Protons

Typical energy spectrum and angle distribution of TNSA laser accelerated proton beam

- Point source ~µm
- ➤ Particle number ~10⁹-10¹³
- Short pulse ~ps-ns
- Low emittance ~mm·mrad
- Large divergence angle ~10°
- Broad energy spread~100%

Laser ions also have wide energy-spectra

Using the DRACO-PW laser, a 30 fs laser pulse with 6.5×10^{21} W/cm² intensity was focused on a 250 ± 25 nm thickness plastic target, which created the laser-accelerated protons at a record energy of **150 MeV**.

Laser-accelerated protons with ps duration

- \gt A synchronized chirped laser pulse tracked the transient opacity induced in SiO₂ by these protons, yielding a minimum pulse width of 3.5 \pm 0.7 ps and extending ultrafast science into the regime of ion interactions.
- \rightarrow At 10^{10} – 10^{12} ppp, the peak current exceeds the kilo-ampere level.

Transient opacity induced by ions in SiO₂

Nat Commun 7, 10642 (2016).

Proton Radiotherapy Based on Laser Accelerator

➤ In 2022, there were 19.96 M new cancer cases and 9.74 M cancer-related deaths worldwide. In China, the numbers were about 4.82 M and 2.57 M.

➤ Proton therapy is an advanced radiation treatment technology that requires precise adjustment of the proton beam to ensure the therapeutic beam accurately targets the

tumor site.

常规加速器治疗设备

Advantages:

- 1. Ultra-high dose rate 10^9 Gy/s;
- 2.Lower equipment complexity;
- 3.Compact size;
- 4. Combines radiotherapy with immunotherapy.

激光装置

High-dose-rate FLASH irradiation beam

Stage	Time	Core mechanism	Extremely high dose rate beam
Physical Stage	<10 ⁻¹⁵ s	ionization, excitation, secondary particle production	to be clarified
Physical-chemical Stage	10 ⁻¹⁵⁻¹² s	Molecular dissociation, electron hydration, free radicals production	to be clarified (Production saturation of free radicals and hydrated electrons?)
Heterogeneous chemical Stage	10 ⁻¹²⁻⁶ s	on DNA/biomolecular	oxygen depletion, radicals recombination, ROS scavage, Fenton reaction
Homogeneous Chemical Stage	10 ⁻⁶⁻⁰ s		
Biochemical Stage	10 ⁰⁻³ s	DNA repair, enzymatic reaction	less damage to normal cells, strong damage to cancer cells
Biological Stage	>10 ³ s	cellular response (cell cycle arrest, death), tissue response	immune response to cancer cells

Ultrahigh dose rate (FLASH) radiation

Experiments have verified that laser accelerated protons appear to confer a greater suppressive effect on tumor cells (tissue) than conventional approaches.

Nature Physics | VOL 18 | 2022 | 316–322

Immuno-radiotherapy?

5-year survival for cancer patients of localized (organ confined), regional (invasion to lymph nodes) or distant (metastases detected by imaging) using the US National Cancer Institute Surveillance, Epidemiology and End Results (SEER) registries.

Laser accelerator + immunotherapy == Immuno-radiotherapy?

Irradiation applications with ultra-intense beam

Compared to traditional accelerators, laser-accelerated proton beams exhibit unique beam characteristics, offering novel opportunities for research and potential applications across a wide range of scientific fields.

Plasma Based Beam Device

- Plasma can serve as an ideal medium for neutralizing space charges. It can be employed as a novel component for controlling the transmission of particles.
- When interacting with strong lasers and particle beams, plasma exhibits various nonlinear effects.

Plasma used as the extraction for high-energy colliders

Plasma as the injection for heavy ion driven fusion

Pictures of passive plasma lens

Passive plasma lens (PPL):

- Beam self-generated magnetic field
- Magnetic field gradient ~MT/m
- Bottleneck: focusing characteristics strongly depend on beam parameters

Pictures of for active plasma lens

Active plasma lens (APL):

- External current
- Magnetic field gradient ~kT/m
- Good stability and adjustability
- Bottleneck: complex structure, multiple external devices, high power consumption, Z-pinch effect

Hill equation

$$\frac{d^2\rho}{dz^2} + K\rho = 0$$

$$\begin{cases} \frac{d^2\xi}{d\zeta^2} + K\xi = 0\\ \frac{d^2H}{d\zeta^2} + KH = 0 \end{cases}$$

Light: Sci. Appl. 5, e16015 (2016)

PRL 132, 215001 (2024)

Outline

- Institute of Heavy ion Physics@ Peking University
- Introduction to Laser Plasma Accelerator
- The Compact laser plasma accelerator (CLAPA-I and CLAPA-II)
- Summary

CLAPA-I

- ➤ 2013-2018, Peking University built the first 1% energy spread laser proton accelerator, which can generate proton beam with 1-15 MeV energy ps-ns duration and ultrahigh dose rate.
- Compact LAser Plasma Accelerator, CLAPA-I.

1% energy spread proton beams

PRAB 22, 061302 (2019). PRAB 23,031302 (2020).

Position (m)

The emittance of laser driven protons

The emittance of CLAPA proton beam was measured to be 0.01-0.1 mm mrad, using three different methods at different positions along the transport beamline: pepper-pot method, quadrupole triplet scan, and single-shot emittance measurement.

WALLEY Beijing Laser Acceleration Innovation Center

CLAPA-II

The world highest-average-power PW laser

2PW laser system

➤ Peak power: 2.44 PW (最高峰值功率)

➤ Pulse energy: 72 J (单脉冲能量)

> Pulse duration: 39 fs (脉宽)

➤ ns contrast ratio: >10¹⁰ (纳秒对比度)

Acceleration section

Beam delivery and treatment room

Data and control system

Outline

- Institute of Heavy ion Physics@ Peking University
- Introduction to Laser Plasma Accelerator
- The Compact laser plasma accelerator (CLAPA-I and CLAPA-II)
- Summary

Summary

- Laser proton accelerators feature TV/m high gradients and can generate beams with extremely high peak current and dose rate, showing unique applications in tumor radiotherapy, material irradiation under extreme conditions, etc.
- ➤ Peking University is constructing a PW laser proton accelerator and the first laser accelerator-based tumor radiotherapy device.

颜学庆 陈佳洱 Gerard Mourou 赵研英

马文君

朱昆

林晨

徐新路

吴昊

