

# Synchrotron Light Sources in Thailand

Dr. Thakonwat Chanwattana

**Synchrotron Light Research Institute (SLRI)** 

thakonwat@slri.or.th



## Outline

- Synchrotron Light Research Institute (SLRI)
- Siam Photon Source I (SPS-I)
- Siam Photon Source II (SPS-II)

## Synchrotron Light Research Institute (SLRI)









#### Vision

A Center of Excellence in Synchrotron Light Technology to Support the Country's Development of Economy and Quality of Life of the People



#### Mission

- Research on Synchrotron and Utilization of Synchrotron
- Provide Services of Synchrotron and Synchrotron Technology
- Promote the Transfer and Learning of Synchrotron Technology

## **SLRI History**



Opened to users

1998

Installation of major parts from SORTEC (Japan)

1996

National Synchrotron Research Center (NSRC) project approved



- New Synchrotron
- Accelerator **Applications**

2018

RF cavity upgraded

Other high impact projects

#### Synchrotron Core Tech

#### **Research & Applications**

#### **Technology Transfer**

#### CORE

SPS-I

**SPS-II** 

**LINAC Applications** 

Accelerator Mass Spectrometry

Synchrotron Proton Therapy

#### Synchrotron Tech



Green Hydrogen



EUV



Brain



CO<sub>2</sub> CO<sub>2</sub> Capture



**Semiconductor** 



















**Digital** 

























#### Graphene



Environment

## Food & agriculture

Social Green Health









### Siam Photon Source I (SPS-I)





## **SPS-I** accelerator

Transport (LBT)



| Parameters                                            | SPS          |
|-------------------------------------------------------|--------------|
| Circumference (m)                                     | 81.3         |
| Energy (GeV)                                          | 1.2          |
| Relativistic factor y                                 | 2348.34      |
| Emittance ε <sub>x0</sub> (nm·rad)                    | 41.0         |
| Nat. energy spread $\sigma_E$ (%)                     | 0.066        |
| Nat. chromaticity $\xi_x/\xi_y$                       | -8.7/-6.4    |
| Tune Q <sub>x</sub> /Q <sub>y</sub>                   | 4.75/ 2.82   |
| Momentum compaction $\alpha_c$                        | 1.70e-2      |
| Damping times hor./ver./long. (ms)                    | 10.7/9.8/4.7 |
| Damping partition number $J_x/J_y/J_\delta$           | 0.92/1.0/2.0 |
| Straight/circumference                                | 0.33         |
| Energy loss per turn from dipole U <sub>0</sub> (MeV) | 0.066        |
| RF frequency (MHz)                                    | 118          |
| RF voltage (MV)                                       | 0.3          |
| Harmonic number                                       | 32           |
| Overvoltage V/U <sub>0</sub>                          | 4.5          |
| Synchronous phase (degree)                            | 167.29       |
| Synchrotron tune                                      | 0.00460      |
| Nat. bunch length (mm)                                | 29.03        |
| Nat. bunch duration (ps)                              | 96.8         |

7

#### **SPS-I Beamlines**



#### **Insertion devices (IDs)**

U60 : Undulator

MPW: Multipole wiggler

SWLS: Super conducting wavelength shifter

SMPW: Super conducting multipole wiggler

#### **Operation modes based on IDs**

Operation Mode Selection:

[1] Bare Ring

[2] 2IDsMPW (U60 + MPW 2.2T)

[3] 2IDsSWLS6.5 (U60 + SWLS 6.5T)

[4] 3IDsSWLS6.5 (U60 + MPW 2.2T + SWLS 6.5T)

[5] 3IDsSWLS4.0 (U60 + MPW 2.2T + SWLS 4.0T)

[6] 3IDsSMPW3.5 (U60 + MPW 2.2T + SMPW 3.5T)

[7] 4IDs (U60 + MPW 2.2T + SWLS 6.5T + SMPW 3.5T)

| Parameters             | U60  | MPW | SWLS | SMPW |
|------------------------|------|-----|------|------|
| Peak field (T)         | 0.55 | 2.2 | 6.5  | 3.58 |
| Number of main poles   | 80   | 9   | 1    | 12   |
| Pole width (mm)        | 96   | 70  | 139  | 115  |
| Good field region (mm) | 1.6  |     | .45  | . 25 |
| ΔB/B < 0.1%            | ±6   | ±5  | ±15  | ±25  |

## **SPS-I Machine Operation**

> 23 hrs/day Beam time

#### **Decay mode operation**

Beam injection: 2 times/day



## **SPS-I Operation History**



25 26 27 28 29 30 31

MODE 2 MPW

MODE 4 MPW+SWLS

#### Monthly beam service hour



#### Accumulated service hour



## **SPS-I Operation History**



#### Siam Photon Source I (SPS-I)



#### Siam Photon Source II (SPS-II)

Nakhon Ratchasima

Rayong

Bangkok



## Siam Photon Source II (SPS-II)

| Parameters                                            | SPS          | SPS-II       |
|-------------------------------------------------------|--------------|--------------|
| Circumference (m)                                     | 81.3         | 327.6        |
| Energy (GeV)                                          | 1.2          | 3.0          |
| Relativistic factor γ                                 | 2348.34      | 5870.85      |
| Emittance ε <sub>x0</sub> (nm·rad)                    | 41.0         | 0.96         |
| Nat. energy spread $\sigma_{E}$ (%)                   | 0.066        | 0.077        |
| Nat. chromaticity $\xi_x/\xi_y$                       | -8.7/-6.4    | -69.1/-69.7  |
| Tune Q <sub>x</sub> /Q <sub>y</sub>                   | 4.75/ 2.82   | 34.21/12.37  |
| Momentum compaction $\alpha_c$                        | 1.70e-2      | 3.24e-4      |
| Damping times hor./ver./long. (ms)                    | 10.7/9.8/4.7 | 9.8/11.3/6.1 |
| Damping partition number $J_x/J_y/J_\delta$           | 0.92/1.0/2.0 | 1.15/1.0/1.8 |
| Straight/circumference                                | 0.33         | 0.35         |
| Energy loss per turn from dipole U <sub>0</sub> (MeV) | 0.066        | 0.578        |
| RF frequency (MHz)                                    | 118          | 499.654096   |
| RF voltage (MV)                                       | 0.3          | 2.2          |
| Harmonic number                                       | 32           | 546          |
| Overvoltage V/U <sub>0</sub>                          | 4.5          | 3.8          |
| Synchronous phase (degree)                            | 167.29       | 164.77       |
| Synchrotron tune                                      | 0.00460      | 0.00446      |
| Nat. bunch length (mm)                                | 29.03        | 2.9          |
| Nat. bunch duration (ps)                              | 96.8         | 9.7          |

- Larger ring → More beamlines (~ 21)
- Higher beam energy → Higher photon energy
- Lower emittance
  - + Higher current → Higher flux and brightness



## Siam Photon Source II (SPS-II)



Will be located in The Eastern Economic Corridor of Innovation (EECi), Rayong.

## **SPS-II Facility**

#### Redesigning synchrotron building (inc. structural foundation)



Design includes a solar cell rooftop capable of providing 2 MW of power





# SPS-II Machine Layout



based on beam injection with Non-Linear Kicker (NLK) to storage ring

## **SPS-II Storage Ring**

#### **DTBA (Double Triple Bend Achromat) Lattice**



14 Cells -> 28 straights in total



#### **Design Concept:**

- DTBA lattice: to adopt MBA with an extra straight section in each cell.
- Emittance ~ 1 nm·rad
- Space usage > 35%
- 14 DTBA cells -> 28 straight sections.
- The chromaticity is corrected locally in the dispersion bumps.
- The odd  $\pi$  phase advance between dispersion bumps are for nonlinear driving term cancellation.





With multipole errors and misalignment after correction



Optimized solution (grey)

#### **SPS-II Booster**

- Achieve a low emittance of 5.89 nm-rad to ensure clean injection into the storage ring.
- Implement an energy ramping cycle with a 2-Hz repetition rate.
- Apply a sinusoidal pattern for the energy ramping process.
- Operate with a beam current of 2 mA.







#### **Concentric Booster**



| Parameter                              | Detail                 |
|----------------------------------------|------------------------|
| Circumference                          | 306.00 m               |
| Beam energy                            | 3.0 GeV                |
| Relativistic factor (γ)                | 5870.85                |
| Emittance                              | 5.89 nm-rad            |
| Nat. energy spread                     | 0.091%                 |
| Nat. chromaticity (ξx/ξy)              | -23.63/ -10.31         |
| Tune $(v_x / v_y)$                     | 14.71/5.61             |
| Momentum compaction $(\alpha_c)$       | 1.671×10 <sup>-3</sup> |
| Energy loss per turn (U <sub>0</sub> ) | 0.75 MeV               |
| RF frequency                           | 499.654096 MHz         |
| Harmonic number                        | 510                    |
| Beam current                           | 2 mA                   |
| Repetition rate                        | 2 Hz                   |

## **SPS-II Injector Linac**

| Parameters                                   | Detail                  |
|----------------------------------------------|-------------------------|
| Total length                                 | ≤ 27.5 m                |
| Beam height                                  | 1.5 m                   |
| Operation mode                               | Single bunch mode (SBM) |
| RF frequency of bunchers                     | 238 and 476 MHz         |
| RF frequency of accelerating structures      | 2856 MHz                |
| RF macro-pulse length (FWHM)                 | < 1 ns                  |
| RF macro-pulse repetition rate               | 1-5 Hz (adjustable)     |
| Charge in single bunch                       | ≥ 1.5 nC                |
| Single bunch purity                          | Better than 1%          |
| Final beam energy                            | 250-270 MeV             |
| Final normalized emittance (1σ)              | ≤ 50 π mm·mrad          |
| Final energy spread (rms)                    | ≤ 0.5%                  |
| Final beam position error                    | Within ±0.5 mm          |
| Pulse-to-pulse energy variation (rms)        | ≤ 0.25%                 |
| Pulse-to-pulse beam position variation (rms) | ≤ 0.2 mm                |
| Pulse-to-pulse jitter                        | ≤ 100 ps                |

#### **Conceptual Layout**



- High energy beam → Small emittance + Low energy spread
- Inject at higher energy → Simplify booster requirements

## **SPS-II Low-Energy Beam Transport Line (LBT)**



- Space and layout are limited by booster circumference.
- Design based on linear beam optics.
- Sufficient correctors and beam diagnostics are required.

#### Beam stay clear



Designed by T. Chanwattana

Results from reference case with  $\beta_{x,y} = 7$  m,  $\alpha_{x,y} = 0$ 

## SPS-II High-Energy Beam Transport Line (HBT)



- Design based on linear beam optics.
- Space, especially closer to the storage ring, is limited according to magnet arrangement.





Designed by T. Chanwattana

## **SPS-II Phase-I Beamlines**

| Beamline    | Technique                                                          | IDs   | Energy range  |
|-------------|--------------------------------------------------------------------|-------|---------------|
| TXAS        | Tender X-ray absorption spectroscopy                               | IVU23 | 1.8-13 keV    |
| HXAS        | High X-ray absorption spectroscopy                                 | IVU18 | 6-35 keV      |
| XMCT        | X-ray microtomography                                              | MPW   | 10-60 keV     |
| HRXRD/MX    | High resolution X-ray diffraction & Macromolecular crystallography | IVU18 | 9-27 keV      |
| SWAXS       | Small & wide-angle X-ray scattering                                | IVU20 | 8-20 keV      |
| GIXRD/TRXRF | Gazing-incidence X-ray Scattering and Total Refection Fluorescence | IVU18 | 8-28 KeV      |
| HRSXS       | High resolution soft X-ray spectroscopy                            | EPU58 | 90 eV-2.5 keV |



## SPS-II R&D



## SPS-II R&D: Magnet Prototype

#### **Storage ring magnets prototype**







- ✓ Manufacturing: 15 magnets (9 types) successfully fabricated.
- ✓ **Tolerance Verification:** Fabrication and assembly tolerances confirmed within ±20 µm (pole profile).
- ✓ Coil Testing: Resistance, inductance, and temperature rise tests meet all specifications.
- ✓ Field Quality: Magnetic field measurements completed on 11 of 15 magnets. Pole-end chamfering is in progress.
- ➤ **Design Improvements:** New mechanical design was implemented on 2 magnets, resulting in improved magnetic field quality.
- ➤ Repeatability Checks: Repeatability of magnet assembly and deformation check to be initiated soon.

✓ Manufacturing: 5 magnets (5 types) successfully fabricated.

**Booster magnets prototype** 

- ✓ **Tolerance Verification:** Fabrication and assembly tolerances confirmed within ±25 µm(pole profile).
- ✓ **Coil Testing:** Resistance, inductance, and temperature rise tests meet all specifications.
- Field Quality: Testing in progress
- Design Improvements: Not yet started
- Repeatability Checks: Not yet started

Credit: P. Sunwong and S. Pawanta

## SPS-II R&D: Vacuum Prototype



- ✓ **First prototype** of stainless steel and aluminum vacuum chambers completed. Straight sections made from aluminum extrusion; bending sections CNC-machined with oil-less cooling
- Ongoing improvement of aluminum vacuum chamber prototype, focusing on reducing geometry deformation and improving vacuum performance.

A6061-T6

**CNC** machining

Aluminum extrusion





Credit: T. Phimsen, S. Boonsuya and S. Chitthaisong

Aluminum extrusion

## **SPS-II R&D: Girder Prototype**

Dec. 2025



Dec. 2024

#### The up-stream half cell lay out

- ✓ Frist G1 girder successfully manufactured
- ✓ Precision machining: top surface alignment grooves verified to meet <15 μm specification, adjustable positioning accuracy within ±5 μm
- > Deformation and vibration testing in progress
- ➤ Ongoing manufacturing of G1 and G2 girders

#### Six girders per cell to install, 84 girder in total







#### SPS-II R&D: Kickers and BPM

Non-linear kicker (NLK) prototype for the storage ring injection





Ongoing development in collaboration with LNLS, SIRIUS

#### **BPM** prototype



BPM for storage ring



Booster BPM





Stripline kicker for tune measurement and bunch by bunch feedback









First stripline kicker manufactured and tested; minor improvements required

## **SPS-II Project Timeline**



