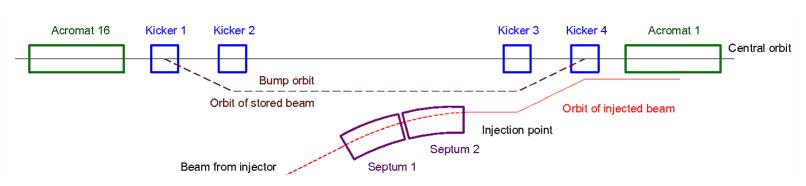
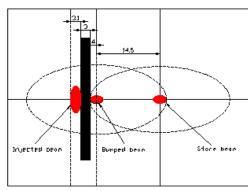
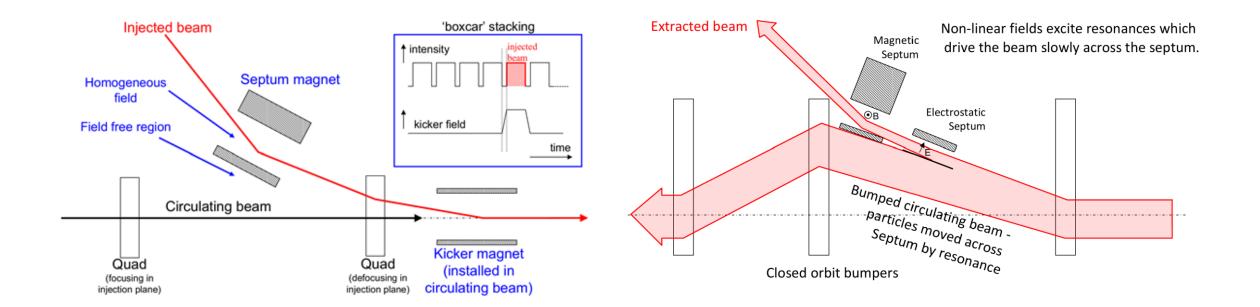
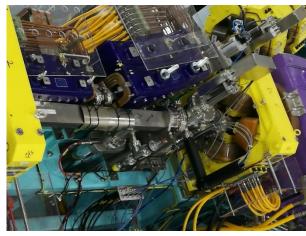

Injection to and Extraction from a Synchrotron


Lianhua Ouyang


Contents


- ■Why we need injection and extraction?
- ■Background knowledge
- ■Types of injection & extraction elements
 - **■**Electrostatic septum
 - ■DC Magnetic septum
 - Eddy current magnetic septum
 - Kickers/bumpers
- **■**Summary

- ■An accelerator has limited dynamic range: a chain of accelerators is required to reach high energy. For examples, Light Source consists of: LINAC + Booster + Storage Ring; Medical Accelerator for Tumor Treatment: Injector+ Synchrotron + Treatment Rooms;
- ■Injection: inject a particle beam into a circular accelerator or accumulator ring, at the appropriate time;
- ■Extraction: extract the particles from an accelerator to a transfer line or a beam dump, at the appropriate time;
- ■The goals:
 - minimize beam loss;
 - place the particles onto the correct trajectory, with the correct phase-space parameters.



Fast single turn injection/extraction

Resonant multi-turn extraction

■The force used to direct a charged particle beam is known as the Lorentz force. The Lorentz force is given by:

$$F = q \left[E + (v \times B) \right] ,$$

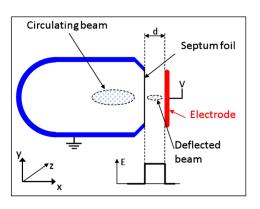
where

- \blacksquare F is the force (N),
- \blacksquare E is the electric field (V/m),
- ■B is the magnetic field (T),
- ■q is the electric charge of the particle (C),
- \blacksquare v is the instantaneous velocity of the particle (m/s),

■The deflection of a charged particle beam in an electric field is given by

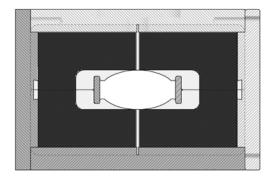
$$\theta_{E,x} = \tan^{-1} \left[\frac{1}{(p \cdot 10^9) \cdot \beta} \cdot \int_{z_0}^{z_1} |E_x| dz \right] = \tan^{-1} \left[\frac{|E_x| \cdot l_{eff}}{(p \cdot 10^9) \cdot \beta} \right] = \tan^{-1} \left[\frac{|V| \cdot l_{eff}}{d \cdot (p \cdot 10^9) \cdot \beta} \right],$$

- ■V is the potential difference between plates (V),
- ■d is the separation of the plates (m),
- \blacksquare p is the normalized beam momentum (GeV/c), you can replace it with β E
- \blacksquare Ex is the electric field in the x-direction (V/m),
- $\blacksquare \beta$ is a unit-less quantity that specifies the fraction of the speed of light at which the particles travel (v/c), and
- $\blacksquare \theta_{E,x}$ is the deflection angle, in the x-direction, due to electric field Ex (radians).

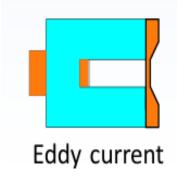

■The deflection of a charged particle beam in a magnetic field is given by :

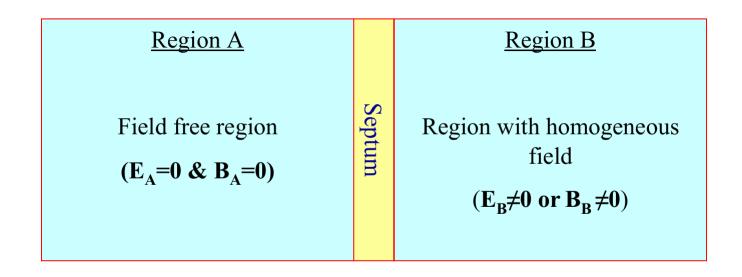
$$\theta_{B,x} = \left[\frac{0.2998}{p}\right] \cdot \int_{z_0}^{z_1} \left| B_y \right| dz = \left[\frac{0.2998 \cdot l_{eff}}{p}\right] \cdot \left| B_y \right| ,$$

- ■By is the magnetic flux density in the y-direction (T),
- \blacksquare p is the normalized beam momentum (GeV/c), you can replace it with βE
- ■leff is the effective length of the magnet, and
- $\blacksquare \theta_{B,x}$ is the deflection angle, in the x-direction, due to magnetic field By (radians).


Types of injection & extraction elements

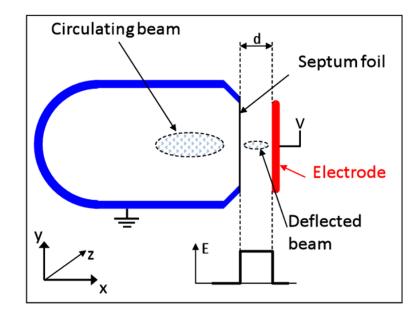
- **■**Septum
 - **■** Electrostatic septum
 - Megnetic septum
 - DC drive septum
 - **■** Lambertson magnet
 - Eddy current septum
- ■Kicker and bumper
- Others: Non-linear Kicker, ...



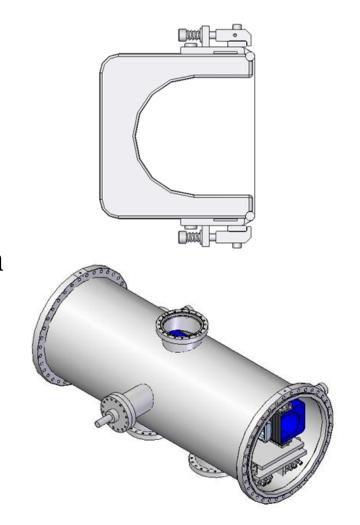


What is a septum?

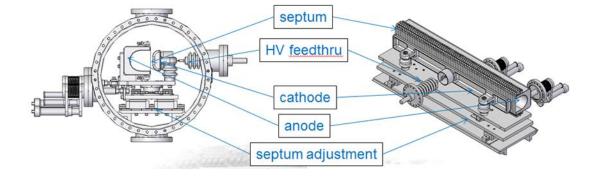
In a particle-accelerator, a septum (plural Septa) is a device which separates two field regions:

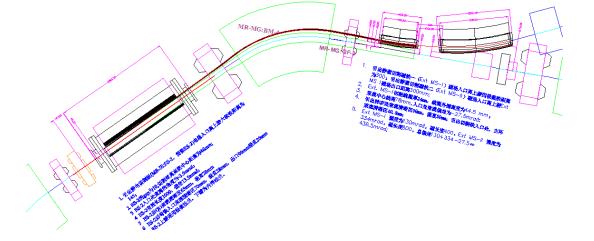

Electrostatic vs Magnetic deflection?

- ■It is more practical to use magnetic field!
- ■Too high electric field in vacuum could provoke electric breakdown. It is widely accepted that 10 MV/m is a practical limit.
- ■Electric deflection could be applied for situations where very thin septa and small deflection angle are needed and,
- ■Could be beneficial for non-relativistic particles (e.g. low energy beams(for instance, electron microscope), heavy ions etc.)


Advantage vs. disadvantage

Electric septum	Magnetic septum
Near perfect no-field region	Field leakage relatively large
Thin septum	Thick septum
Less effective for relativistic beams(small deflection angle)	More effective for relativistic beams (strong deflection)
Strictly in-vacuum design	In-vacuum and in-air design is possible
Difficult to have high fields (breakdown)	Magnetic field up to 1.5 T


- ■A thin septum thickness results in small interaction with beam. The orbiting beam passes through the hollow strip support, which is a field-free region.
- ■To achieve a slow-extraction efficiency of greater than 98%, the effective thickness of the septum unit must be $\leq 100 \, \mu m$. This may be realised by a very carefully aligned the septum,
- ■The extracted beam passes just on the other side of the septum (high, homogeneous, field region).



- ■Electrostatic septa use vacuum as an insulator, for there is a very high electric potential between septum(anode) and cathode, and it is prone to sparking and arcing.
- ■To allow precise matching of the septum position with the circulation beam trajectory, there is often a displacement system which allows parallel and angular movement with respect to the circulating beam.
- ■The septum strips are tensioned: this helps to prevent any sagging under the heat load resulting from collisions of intercepted beam particles.

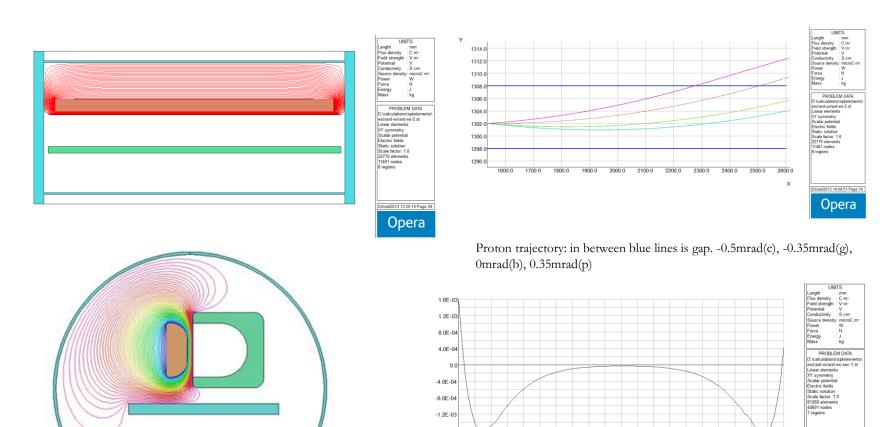
	RF-Kicker		ES		MS-I	MS-II										
Effective length (m)	0.25		1.0		0.4	0.8										
Deflection angle (mrad)	0.001		13.5		130	334										
Gap(mm)			10		40	40										
Field strength	100V		60.4 kV		7904 Gs	10154 Gs										
Scan frequency (MHz)	2-6		DC		DC		DC	DC								
Beam stay clear H×V (mm×mm)	125×50		10×30		10×30		30×30	30×30								
Field stability			0.02%	Τ	0.02%	_{0.02%} ə										
Septum thickness (mm)			<0.1mm		<0.1mm		<0.1mm		<0.1mm		<0.1mm		<0.1mm		26mm	45mm
Total length(mm)	500		1360		456	856										

Note:

ES stands for Electrostatic septum; MS stands for magnetostatic septum;

The particles are protons(rest energy is 938.272 MeV), the kinetic energy is 250MeV, the deflection angle is 13.5 mrad, and the gap is 10 mm, the effective length is 1 m,

$$\beta = \sqrt{1 - \gamma^{-2}} = 0.61361$$

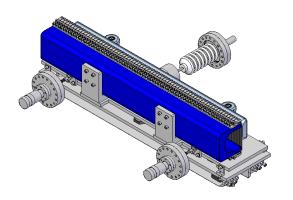

The electric strength is

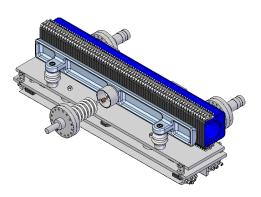
$$\mathbf{E} = 10^9 \times \tan \varphi \cdot E\beta^2 / L = 10^9 \times \tan(13.5/1000) \times 1.1883 \times 0.61361^2 / 1.0$$
$$= 6.04 \times 10^6 \ V/m$$

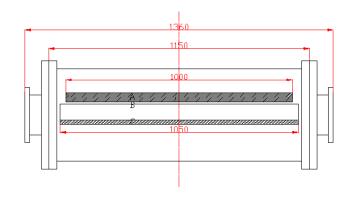
And the voltage is

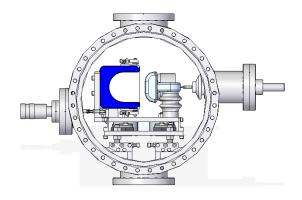
$$V = \mathbf{E} * g = 60.4 \, kV$$

Electric field and particle trajectory




2009.0 1081.0


The goal of the simulation is to optimize electric distribution and prevent electric field concentration, avoiding electric breakdown.


Opera

- ■Vacuum chamber: cylinder, 1×10-8Torr;
- **■Septum:** 0.1mm, molybdenum strip (foil);
- ■Anode: C-core, aluminum alloy;
- ■Cathode (High voltage): stainless steel 316L, cross section and end shapes optimization, electro-chemical polishing;
- ■HV feedthrough:100KV, self design or commercial;
- Septum position adjustment system: manually, both in the parallel and angular directions.

Measures to prevent discharges and sparks:

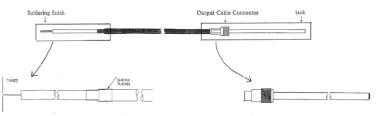

- ■Surge-limiting resistor near HV feedthrough;
- ■Cathode: stainless steel 316L, cross section and end shapes optimization;
- ■Surface treatment: mechanical polishing, electro-chemical polishing(ECP), impurity removal, clean
- ■Anode is longer than cathode longitudinally, to reduce the possible end discharges;
- ■Reliable connections, insulations; corona ring;
- **■**Conditioning carefully.

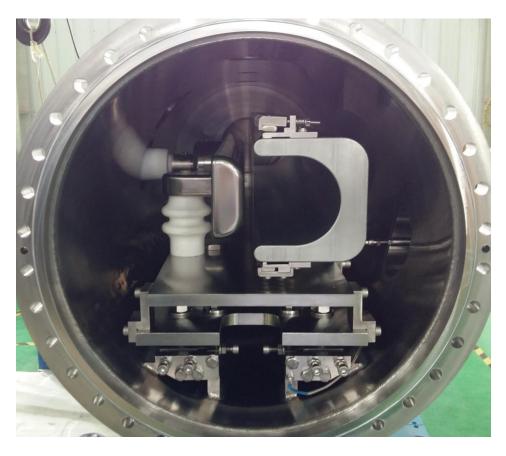
Typical technical data for an electrostatic septum include

- ■electrode length in the range 500 mm to 3000 mm;
- ■gap width variable in the range 10 mm to 35 mm;
- ■septum thickness of $\leq 100 \, \mu \text{m}$;
- ■vacuum in the range 10⁻⁹ mbar to 10⁻¹² mbar;
- ■voltage up to 300 kV;
- ■electric field strength up to 10 MV/m;
- ■septum foil of molybdenum (or tungsten-rhenium wires);
- ■electrode made of anodized aluminum, stainless steel or, for extremely low vacuum applications, titanium;
- ■some electrostatic septa are bake-able up to 300°C to achieve vacuum in the 10⁻¹² mbar range (not applicable to an aluminum electrode).

HV power supply parameters:

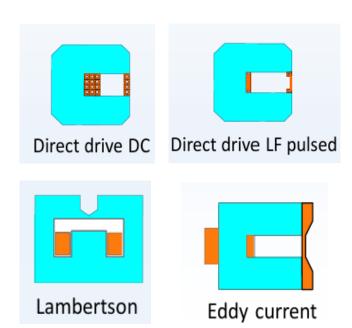
- Spellman SL100*300
- Output voltage 0-100kV, Continuous, stable adjustment
- Voltage Regulation: <0.005%
- Output current 0-3 mA;
- Output cable PMI;
- Ripple 0.1% RMS;
- Stability 0.01% per hour;
- Temperature coefficient 0.01% per degree C;
- Protection: Automatic current regulation protects against all overloads, including arcs and shorts, fuses, surge-limiting resistors, and low-energy components provide ultimate protection.

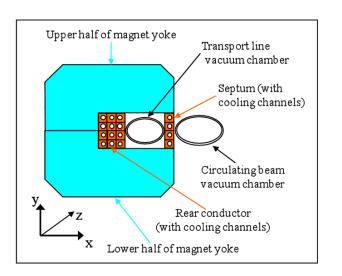


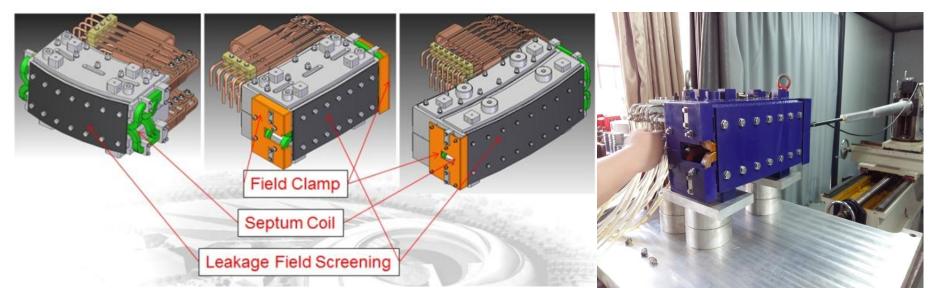

$$I = 4571(A) Z_0 = 35.0 (Ohms)$$

$$C = \varepsilon A/d = 8.854 \times 10^{-12} \times 0.08/0.01 = 70.8 (pF)$$

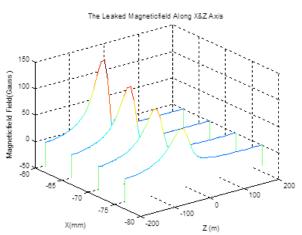
$$E = \frac{1}{2}CV^2 = 0.5 \times 70.8 \times 10^{-12} \times 80000^2 = 0.223(J)$$

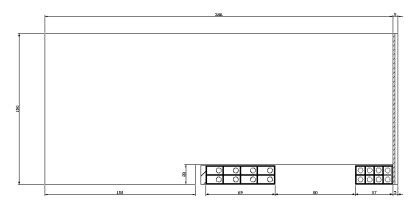




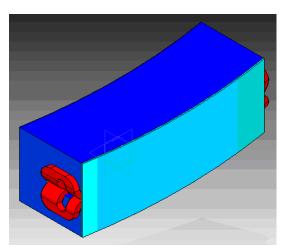


- ■There are several varieties of magnetic septa:
 - direct-drive DC septum magnet,
 - direct-drive pulsed septum magnet,
 - ■eddy-current septum,
 - **■** Lambertson magnet
- ■The main difference between a dipole magnet and a magnetic septum is that the magnetic septum has a field-free region and a homogeneous dipole field region, separated by a relatively thin septum;
- ■As a consequence of the relatively thin septum there is often a high current density in the septum conductor.





Technology considerations:


- Leakage field
 Pure iron plate for leakage field screening;
 field clamp at ends;
- Coils insulation and deformation
 Polymide tape and fiberglass tape;
 Coil deformation control;
- Heat loads

 - Water cooling;
 Temperature detect switch;
 Coil voltage variation monitoring (if necessary).

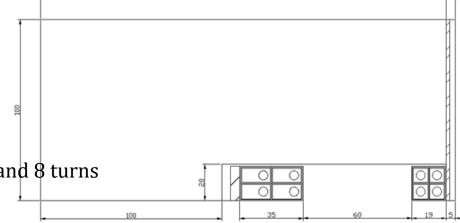
- ■Two half yokes of steel laminations;
- ■8 mm square section conductor with a ø 5 mm water cooling hole;
- ■Coil assemly vacuum moulded (impregnated);
- ■Pure iron plate for leakage field screening;

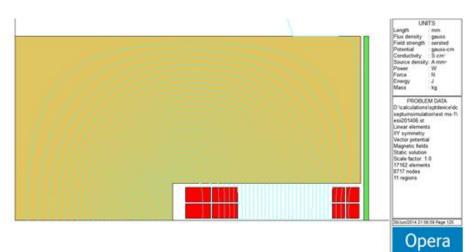
Length (mm)	800
Deflection angle (rad)	334
Field (T)	10154.1
Gap (mm)	40
Ampere turns	32981.3
Turns	16
Septum thickness (mm)	42 (nominal45)
Current (A)	2061.33
Septum conductor dimension (mm)	8×8, water channelf5
Return conductor dimension (mm)	16×8, water channelf5
Current density (A/mm2)	46.463
Coil resistance $(m\Omega)$	15.8
Voltage (V)	32.57
Power (kW)	67.14
Inductance (uH)	739.7
Coil time constant (ms)	61
Water pressure drop (kg/cm2)	1.3
Water velocity (m/s)	4.0
Water channel	16
Water flux (l/s)	1.257
Temperature rise (°C)	12.7
Magnet length (mm)	896
Core weight (kg)	758
Coil copper weight (kg)	224.5

Megnetic field calculation: the deflection angle is 130 mrad,, the effective length is 0.4 m,

$$\gamma = E/E_0 = 0.25/0.938272013 + 1 = 1.2664472525$$

$$\beta = \sqrt{1 - \gamma^{-2}} = 0.61360844$$


$$B = 1.1883 \times 0.13 \times 0.61361/0.2998/0.4 = 0.79044(T)$$


The Ampere turns calculation: Suppose the gap height is 40mm, and 8 turns coils

$$NI = \frac{0.79044 \times 0.04}{4 \times \pi \times 10^{-7} \times 0.98} = 25674(AT)$$

Here we have a magnetic efficiency of 0.98, so the current is

$$I = \frac{NI}{N} = \frac{25674}{8} = 3209(A)$$

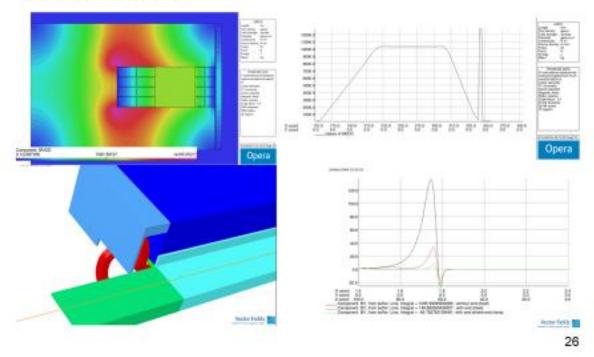
Septum current density

$$j = \frac{I}{S} = \frac{3209}{44.365} = 72.34 \, (A/mm^2)$$

Copper electrical resistivity $0.01826\Omega \cdot mm^2/m$, and the resistance is

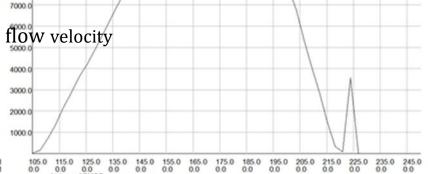
$$R_{8turns} = 5.38 \qquad (m\Omega)$$

The voltage of coils


$$V = 3209 \times 5.38/1000 = 17.25 (V)$$

The coil power

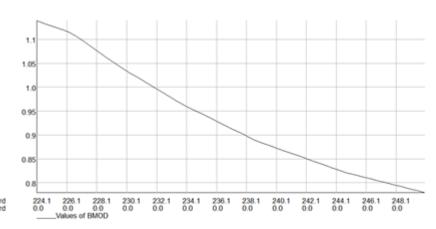
$$P = 3209^2 \times 5.38/1000 = 55.36 (kW)$$


Extraction Magnetostatic Septa

Magnetic analysis

Water cooling the coil, the pressure drop is 0.85 kg/cm2, and the flow velocity

$$v = \left(\frac{\Delta P d^{1.25}}{0.28L}\right)^{\frac{1}{1.75}} = \left(\frac{0.85 \times 5^{1.25}}{0.28 \times 1.97}\right)^{\frac{1}{1.75}} = 4.0 (m/s)$$



here L is cooling circuit length, and d is the diameter, q is the flow rate $\frac{\chi_{\text{coord}}}{1050}$ $\frac{1050}{1050}$ $\frac{1250}{1050}$ $\frac{1350}{1050}$ $\frac{1450}{1050}$ $\frac{1650}{1050}$ $\frac{1750}{1050}$

$$q = 8 \times \frac{\pi}{4} d^2 v \times 10^{-3} = 0.6283(kg/s)$$

coil power is 55.36 KW, temperature increase is

$$\Delta T = \frac{P}{4.2q} = \frac{55.36}{4.2 \times 0.6283} = 21.0(^{\circ}C)$$

UNITS
Imm
Flux density glaus
Field strength oersted
Potential glaus-ce
Conductivity S. cer
Source density: A mer
Power
W
Farce N
Energy J
Mass In

PROBLEM DATA
O Icalculations/aptdexice/do
septumismulation/ead ms-1
es/201405 st
Linear elements
XY symmetry
Vector potential
Magnetic fields
Static solution
Scale factor: 1,0
17192 elements
8717 nodes
11 regions

30/Jun/2014 21:58:28 Page 128

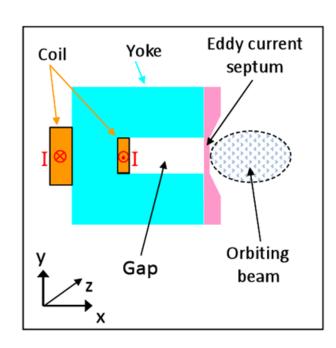
Opera

UNITS

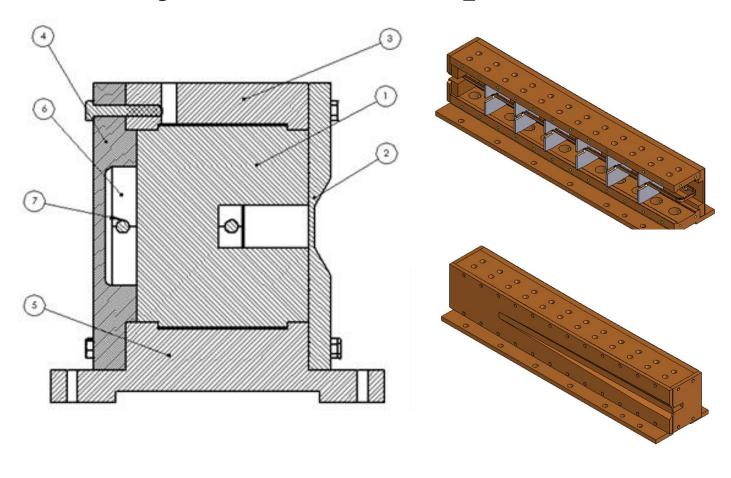
Length mm
Flux density gauss
Field strength cersite
Potential gauss
Conductivity S cm
Source density: A mm
Power
Force N
Energy J

PROBLEM DATA
D 'calculations's gridevice'ds
septumalimidationless ms.1
esi201406 st
Linear elements
XY symmetry
Vector potential
Magnetic fields
Static solution
Scale factor: 1,0
171952 elements
8717 nodes
11 regions

Opera


Typical technical data for a direct-drive DC septum magnet are

- magnetic length per magnet yoke in the range 400 mm to 1200 mm;
- ■gap height of 25 mm to 60 mm;
- ■septum thickness of 6 mm to 20 mm;
- ■outside vacuum;
- ■laminated steel yoke;
- multi-turn coil, with water cooling circuits (flow rate: 12 l/min. to 60 l/min.);
- ■current in the range 0.5 kA to 4 kA;
- **■**power supplied by controllable rectifier;
- ■power consumption: up to 100 kW!
- ■Thus cooling of a DC septum is a significant issue.

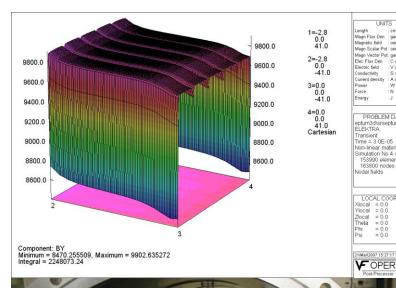

Typical technical data for a direct-drive DC septum magnet are

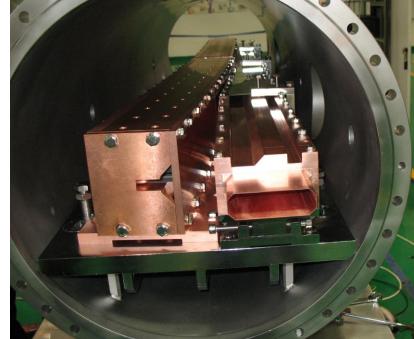
- ■The septum conductor is typically 6 mm to 20 mm thick: the current density in the septum conductor can be as high as 85 A/mm2.
- ■A magnetic screen may be used to further reduce the leakage field into the circulating beam region.
- ■A DC septum magnet is often used outside vacuum: in this case the coil and the magnet yoke can be split in two, an upper and a lower part, to allow the magnet to be 'clamped' over the vacuum chamber.

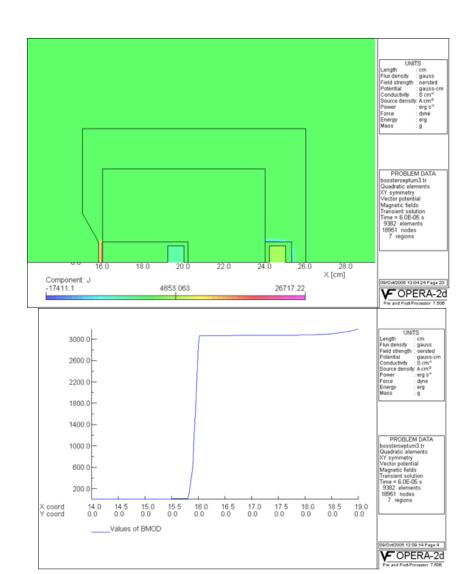
- An eddy-current septum is powered with a half or full sine wave current with a period of typically 50 μs.
- ■The coil is generally constructed as a single-turn, so as to minimize magnet self inductance.
- ■The coil is situated around the back leg of the C-shaped yoke, and therefore coil dimensions are generally not critical.
- ■When the magnet is pulsed, the magnetic field induces eddy currents in the septum, counteracting the fringe field created.
- ■The septum conductor can be made thinner than for the direct drive septum, but cooling circuits may be needed at the edges to cool the septum.

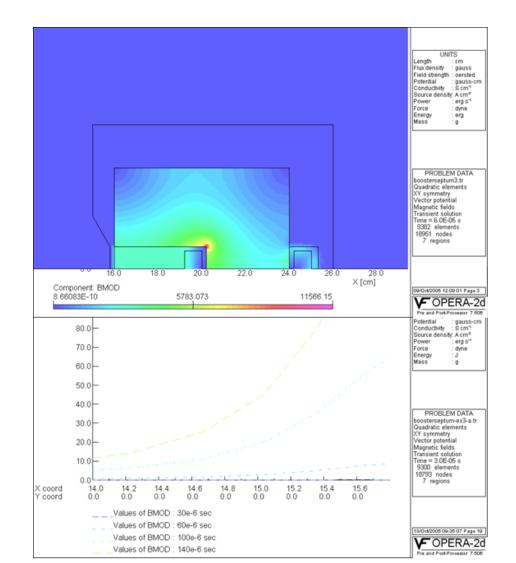
- ■The field in the septum gap as function of time follows the coil current.
- ■The electrical resistance of the septum is kept low: once the septum current is flowing, it takes quite some time to decay away.
- ■magnetic screen: a typical maximum leakage field would be 10% of the gap field
- ■In addition a magnetic screen can be added next to the septum conductor. These modifications permit the fringe field, seen by the circulating beam, to be reduced to below 0.01% of the gap field at all times and places.

Excitation current wave form: half sine:

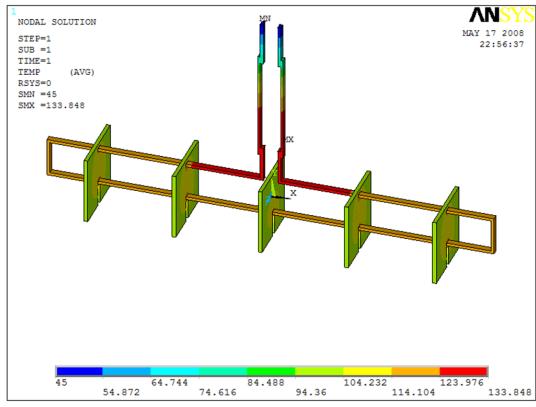

$$I = 8691.6 \sin(2 \times \pi \times 8333.3 \times t) (0 \le t \le 60 \mu s)$$


Stored energy

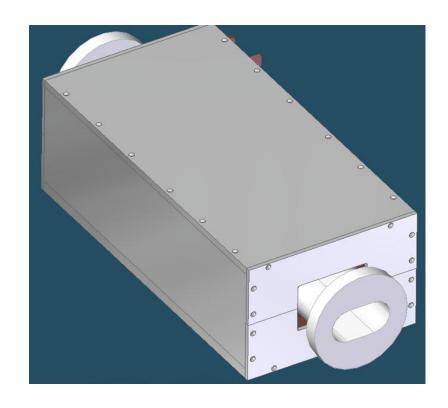

$$E = 2 \times 0.6845 \times 80 = 109.52(J)$$

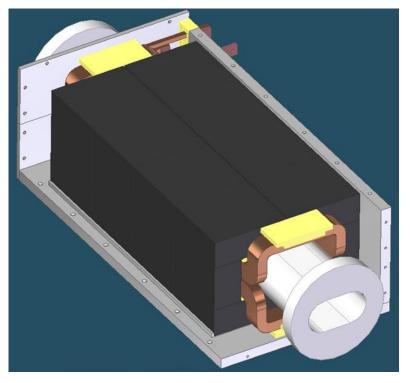

Magnetic inductance

$$L = \frac{2 \times E}{I^2} = \frac{2 \times 109.52}{8691.6^2} = 2.9 \,(\mu H)$$



COIL DEFORMATION, THERMAL ANALYSIS




Typical technical data for an eddy-current septum are

- ■magnetic length per magnet yoke in the range 400 mm to 800 mm;
- ■gap height of 10 mm to 30 mm;
- ■septum thickness of 1 mm to 3 mm;
- vacuum of $\sim 10^{-9}$ mbar, or out of vacuum;
- ■steel yoke with 0.1 mm to 0.35 mm thick laminations;
- ■single-turn coil, with water cooling circuits (flow rate: 1 l/min. to 10 l/min.); current of ~10 kA peak;
- ■fast pulsed with 50 µs period;
- ■powered with a capacitor discharge: half-sine or full-sine wave.

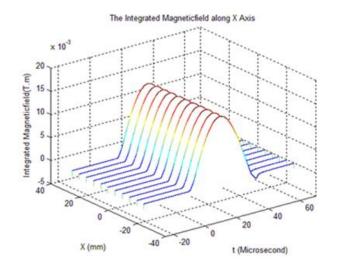
Kicker/bumper magnets

- Window frame, ferrite core;
- Ceramic vacuum chamber;
- Coating/no coating in the inner surface of vacuum chamber;
- Single turn coil of copper plate;

Kicker/bumper magnets

Beam energy 7 MeV, kick angle 30 mrad, magnetic length 0.20m, gap height 0.08m, magnetic efficiency 0.98, then the magnetic flux density

$$B = 0.945272 \times 0.03 \times 0.121473/0.2998/0.2 = 574.5$$
 (Gauss)


The peak current

$$I_m = 0.05745*0.08/\mu_0/0.98 = 3732(A)$$

Current waveform

$$I = 3732\sin(2\pi *12500*t), \quad 0 \le t \le 40us$$

Deflection angle (myed)	30
Deflection angle (mrad)	30
Effective length (mm)	200
Magnetic field(Gauss)	574.5
Beam stay clear H*V (mm*mm)	100 × 60
gap (mm)	80
turn	1
efficiency	0.98
inductance(uH)	0.38
Peak current(A)	3732
Waveform/width(us)	half sine/40
repetition(Hz)	0.1~0.2
Charge voltage (V)	258

16/3/2020 15:45:56

3.000000E+002

2.000000E+002

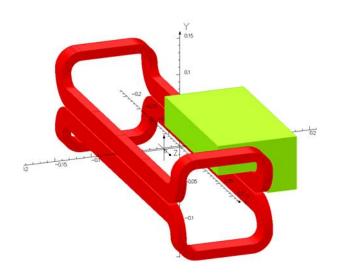
1.000000E+002

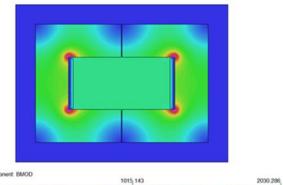
1,367697E+001 Integral = 1.474374E+001

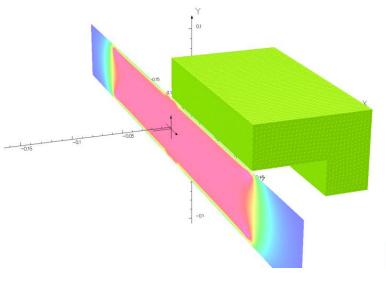
13/40240

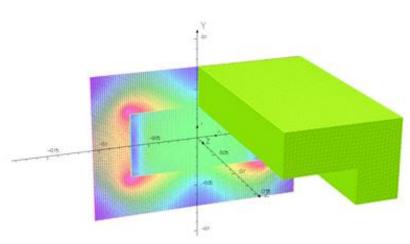
a demonstrate

Oper


UNITS


Length on Plus density gaus Field strength osers! Potential gaus Conductivity 5 cn Source density A on Power W Force N Energy J Mass kg


PROBLEM DAT Dricalculations/opera kers/Protonbumper/br


Linear elements XY symmetry Vector potential Magnetic fields Transiert solution Case 11 of 21 Time: 2.00-05 s 18764 elements 9443 nodes 5 regions

Magnetic field simulation

Length	B.
Magn Flux Density	gauss
Magnetic Field	oersted
Magn Vector Pot	gauss cr
Current Density	A/n2
Electric Field	V/n
Electric Pot	volt
Conductivity	S/a
Power	¥
Force	N

FOODER DATA

Kickerddwardesign00000227.op3

HEEFER Transient
Time = 1.0e -0-04

Monlinear materials
Simulation Ro 21 of 33

996050 elements
1107415 edged
1 conductor
1107415 edged
Activated in global coordinates
Reflection in XY plame (2 field=0)

Reflection in XY plame (2 field=0)

Reflection in XY plame (2 field=0) MODEL DATA

Field Point Local Coordinates Local = Global

FIELD EVALUATIONS

Cartesian CARTESIAN y=0.0 z=0.0

Opera

CRITIC	
Legth	
Rago First Dentity	T
Regnetic Field	4/4
Rago Yactur Put.	This.
Current Descript	4/47
Biscuric Field	Y/a.
Electric Per	mile.
Conductivity:	1/4
Forest	
Force	
Inserge	2

NOME. CATE
At the Parameter (application) replication in the parameter (application) replication replication of the parameter (application) replication replication in the parameter (application) replication replic BODGE DATA

Field Peint Lecal Coordinates

3	Ļ.	*	17		100	-		
- 1					=			
:11	ш	н.		**	NU.	**	FH	P

Line	LIME (hods)) s=0.055 to	\$100.00 \$100.00	Carterio pricit
Cartesian	CATTISTIA (bodal)	110100	Carrect
	9010, 200 to 0.598	946.0	447.0

Opera

Kicker/bumper magnets

Magnetic inductance is

$$L_m = \mu_0 A/(g + l/\mu) = 0.459 (\mu H)$$

$$L_m = \frac{2 \times E}{I^2} = \frac{2 \times 20 \times 0.163}{3732^2} = 0.468 (\mu H)$$

The total inductance after considering some stray inductance

$$L = L_m + L_s = 0.47 + 0.5 \approx 0.97 \,(\mu H)$$

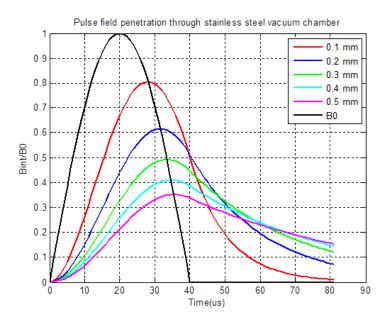
Peak voltage

$$U_m = L * 2\pi f * I_m = 0.97 * 2\pi * 12500 * 3732/1000000$$

= 284.3 (V)

Kicker/bumper magnets

SUMMARY OF TYPICAL FERRITE PROPERTIES


Mn-Zn FERRITES

Property	<u>Symbol</u>	<u>Unit</u>	MN95	MN98	MN67**	MN92	MN8TC	MN80C	MN90	MN8CX	MN30	BT100*	TC6000*	XTC5*	MN60	MN100**	MC25*	MC15K*
Initial Permeability	μ	-	1000	1100	1100	1200	1900	2050	2500	3100	4300	4700	7500	6000	6500	9,000	9500	15,000
Maximum Permeability	μm	-	6800	4500	7500	8000	6000	5000	6200	3700	7500	6400	13000	9300	8500	11,500	12,000	20,000
Saturation Flux Density	Bs	Gauss	5000	4800	5250	4800	4600	4900	4200	4500	4400	4500	3600	4500	4500	4700	3800	3900
Remanent Flux Density	Br	Gauss	2000	3600	2100	2100	1750	1600	600	850	750	1000			800	600		
Coercive Force	Hc	Oersted	0.14	0.29	0.15	0.12	0.15	0.18	0.085	0.20	0.07	0.12			0.08	0.03		
Curie Temperature	Tc	°C	275	265	285	275	185	230	215	195	170	175	104	165	170	170	120	120
dc Volume Resistivity	Þ	ohm-cm	2500	5000	250	325	10 ³	1600	4000	1200	150	200	5	60	500	200	149	10
Bulk Density	ρ	g/cc	4.7	4.7	4.7	4.7	4.5	4.75	4.42	4.7	4.75	4.85	4.85	4.83	4.8	4.8	4.9	4.85

^{*} available only in pressed & fired parts
** available only in machined parts

Ni-Zn FERRITES

Property	Symbol	<u>Unit</u>	<u>N40</u>	C2075	XTH2	C2050	<u>xck</u>	C2025	CM48	CM5	C2010	CM400	CMD10	CN20	CN20B	CMD5005
Initial Permeability	μ	-	15	50	80	100	125	175	190	290	340	400	625	925	1375	2100
Maximum Permeability	μm	-	50	270	440	600	350	850	1300	1200	1500	1600	3000	5000	4100	5500
Maximum Flux Density	B_{M}	Gauss	2500	3000	3600	3700	2500	3900	4400	3100	3900	4600	4300	4000	3500	3300
Remanent Flux Density	Br	Gauss	950	950	1200	2300	650	2500	3000	1700	2800	2400	2900	2600	2100	1300
Coercive Force	Hc	Oersted	8.00	2.60	2.00	2.00	0.95	1.40	1.00	0.65	0.70	0.65	0.36	0.20	0.20	0.12
Curie Temperature	Tc	°C	600	420	300	340	400	270	410	280	245	300	250	185	160	130
dc Volume Resistivity	Þ	ohm-cm	10 ¹⁰	10 ⁹	10 ⁸	10 ⁹	10 ⁹	10 ¹⁰	10 ¹⁰	10 ⁸	10 ⁷	10 ¹⁰	10 ¹⁰	10 ¹⁰	10 ⁸	10 ¹⁰
Bulk Density	ρ	g/cc	4.8	4.6	4.6	4.6	4.25	4.7	5.2	4.4	5	5.15	5.2	5.24	5	5.27

Summary

- ■Because of the time limit, a lot of topics aren't covered;
- ■Injection and extraction device design, especially kicker and bumper, must be well integrated with its matching power supplies; and some accelerator physics knowledge is necessary.
- ■Septa design is a very complicated engineering thing, it involves many subjects such as accelerator physics, electrical engineering, material science, mechanics, and vacuum knowledge;
- ■Last but not least, engineering know-hows are very important, you can get them from practicing or/and from others.

Thank you for your attentions!

Any questions?