Injection to and Extraction from a Synchrotron Lianhua Ouyang #### **Contents** - ■Why we need injection and extraction? - ■Background knowledge - ■Types of injection & extraction elements - **■**Electrostatic septum - ■DC Magnetic septum - Eddy current magnetic septum - Kickers/bumpers - **■**Summary - ■An accelerator has limited dynamic range: a chain of accelerators is required to reach high energy. For examples, Light Source consists of: LINAC + Booster + Storage Ring; Medical Accelerator for Tumor Treatment: Injector+ Synchrotron + Treatment Rooms; - ■Injection: inject a particle beam into a circular accelerator or accumulator ring, at the appropriate time; - ■Extraction: extract the particles from an accelerator to a transfer line or a beam dump, at the appropriate time; - ■The goals: - minimize beam loss; - place the particles onto the correct trajectory, with the correct phase-space parameters. Fast single turn injection/extraction Resonant multi-turn extraction ■The force used to direct a charged particle beam is known as the Lorentz force. The Lorentz force is given by: $$F = q \left[E + (v \times B) \right] ,$$ #### where - \blacksquare F is the force (N), - \blacksquare E is the electric field (V/m), - ■B is the magnetic field (T), - ■q is the electric charge of the particle (C), - \blacksquare v is the instantaneous velocity of the particle (m/s), ■The deflection of a charged particle beam in an electric field is given by $$\theta_{E,x} = \tan^{-1} \left[\frac{1}{(p \cdot 10^9) \cdot \beta} \cdot \int_{z_0}^{z_1} |E_x| dz \right] = \tan^{-1} \left[\frac{|E_x| \cdot l_{eff}}{(p \cdot 10^9) \cdot \beta} \right] = \tan^{-1} \left[\frac{|V| \cdot l_{eff}}{d \cdot (p \cdot 10^9) \cdot \beta} \right],$$ - ■V is the potential difference between plates (V), - ■d is the separation of the plates (m), - \blacksquare p is the normalized beam momentum (GeV/c), you can replace it with β E - \blacksquare Ex is the electric field in the x-direction (V/m), - $\blacksquare \beta$ is a unit-less quantity that specifies the fraction of the speed of light at which the particles travel (v/c), and - $\blacksquare \theta_{E,x}$ is the deflection angle, in the x-direction, due to electric field Ex (radians). ■The deflection of a charged particle beam in a magnetic field is given by : $$\theta_{B,x} = \left[\frac{0.2998}{p}\right] \cdot \int_{z_0}^{z_1} \left| B_y \right| dz = \left[\frac{0.2998 \cdot l_{eff}}{p}\right] \cdot \left| B_y \right| ,$$ - ■By is the magnetic flux density in the y-direction (T), - \blacksquare p is the normalized beam momentum (GeV/c), you can replace it with βE - ■leff is the effective length of the magnet, and - $\blacksquare \theta_{B,x}$ is the deflection angle, in the x-direction, due to magnetic field By (radians). #### Types of injection & extraction elements - **■**Septum - **■** Electrostatic septum - Megnetic septum - DC drive septum - **■** Lambertson magnet - Eddy current septum - ■Kicker and bumper - Others: Non-linear Kicker, ... #### What is a septum? In a particle-accelerator, a septum (plural Septa) is a device which separates two field regions: #### Electrostatic vs Magnetic deflection? - ■It is more practical to use magnetic field! - ■Too high electric field in vacuum could provoke electric breakdown. It is widely accepted that 10 MV/m is a practical limit. - ■Electric deflection could be applied for situations where very thin septa and small deflection angle are needed and, - ■Could be beneficial for non-relativistic particles (e.g. low energy beams(for instance, electron microscope), heavy ions etc.) #### Advantage vs. disadvantage | Electric septum | Magnetic septum | |---|---| | Near perfect no-field region | Field leakage relatively large | | Thin septum | Thick septum | | Less effective for relativistic beams(small deflection angle) | More effective for relativistic beams (strong deflection) | | Strictly in-vacuum design | In-vacuum and in-air design is possible | | Difficult to have high fields (breakdown) | Magnetic field up to 1.5 T | - ■A thin septum thickness results in small interaction with beam. The orbiting beam passes through the hollow strip support, which is a field-free region. - ■To achieve a slow-extraction efficiency of greater than 98%, the effective thickness of the septum unit must be $\leq 100 \, \mu m$. This may be realised by a very carefully aligned the septum, - ■The extracted beam passes just on the other side of the septum (high, homogeneous, field region). - ■Electrostatic septa use vacuum as an insulator, for there is a very high electric potential between septum(anode) and cathode, and it is prone to sparking and arcing. - ■To allow precise matching of the septum position with the circulation beam trajectory, there is often a displacement system which allows parallel and angular movement with respect to the circulating beam. - ■The septum strips are tensioned: this helps to prevent any sagging under the heat load resulting from collisions of intercepted beam particles. | | RF-Kicker | | ES | | MS-I | MS-II | | | | | | | | | | | |--------------------------------|-----------|--|---------|---|---------|--------------------|--------|-------|--------|--|--------|--|--------|--|------|------| | Effective length (m) | 0.25 | | 1.0 | | 0.4 | 0.8 | | | | | | | | | | | | Deflection angle (mrad) | 0.001 | | 13.5 | | 130 | 334 | | | | | | | | | | | | Gap(mm) | | | 10 | | 40 | 40 | | | | | | | | | | | | Field strength | 100V | | 60.4 kV | | 7904 Gs | 10154 Gs | | | | | | | | | | | | Scan frequency (MHz) | 2-6 | | DC | | DC | | DC | DC | | | | | | | | | | Beam stay clear
H×V (mm×mm) | 125×50 | | 10×30 | | 10×30 | | 30×30 | 30×30 | | | | | | | | | | Field stability | | | 0.02% | Τ | 0.02% | _{0.02%} ə | | | | | | | | | | | | Septum thickness (mm) | | | <0.1mm | | 26mm | 45mm | | Total length(mm) | 500 | | 1360 | | 456 | 856 | | | | | | | | | | | #### Note: ES stands for Electrostatic septum; MS stands for magnetostatic septum; The particles are protons(rest energy is 938.272 MeV), the kinetic energy is 250MeV, the deflection angle is 13.5 mrad, and the gap is 10 mm, the effective length is 1 m, $$\beta = \sqrt{1 - \gamma^{-2}} = 0.61361$$ The electric strength is $$\mathbf{E} = 10^9 \times \tan \varphi \cdot E\beta^2 / L = 10^9 \times \tan(13.5/1000) \times 1.1883 \times 0.61361^2 / 1.0$$ $$= 6.04 \times 10^6 \ V/m$$ And the voltage is $$V = \mathbf{E} * g = 60.4 \, kV$$ #### Electric field and particle trajectory 2009.0 1081.0 The goal of the simulation is to optimize electric distribution and prevent electric field concentration, avoiding electric breakdown. Opera - ■Vacuum chamber: cylinder, 1×10-8Torr; - **■Septum:** 0.1mm, molybdenum strip (foil); - ■Anode: C-core, aluminum alloy; - ■Cathode (High voltage): stainless steel 316L, cross section and end shapes optimization, electro-chemical polishing; - ■HV feedthrough:100KV, self design or commercial; - Septum position adjustment system: manually, both in the parallel and angular directions. #### Measures to prevent discharges and sparks: - ■Surge-limiting resistor near HV feedthrough; - ■Cathode: stainless steel 316L, cross section and end shapes optimization; - ■Surface treatment: mechanical polishing, electro-chemical polishing(ECP), impurity removal, clean - ■Anode is longer than cathode longitudinally, to reduce the possible end discharges; - ■Reliable connections, insulations; corona ring; - **■**Conditioning carefully. Typical technical data for an electrostatic septum include - ■electrode length in the range 500 mm to 3000 mm; - ■gap width variable in the range 10 mm to 35 mm; - ■septum thickness of $\leq 100 \, \mu \text{m}$; - ■vacuum in the range 10⁻⁹ mbar to 10⁻¹² mbar; - ■voltage up to 300 kV; - ■electric field strength up to 10 MV/m; - ■septum foil of molybdenum (or tungsten-rhenium wires); - ■electrode made of anodized aluminum, stainless steel or, for extremely low vacuum applications, titanium; - ■some electrostatic septa are bake-able up to 300°C to achieve vacuum in the 10⁻¹² mbar range (not applicable to an aluminum electrode). #### HV power supply parameters: - Spellman SL100*300 - Output voltage 0-100kV, Continuous, stable adjustment - Voltage Regulation: <0.005% - Output current 0-3 mA; - Output cable PMI; - Ripple 0.1% RMS; - Stability 0.01% per hour; - Temperature coefficient 0.01% per degree C; - Protection: Automatic current regulation protects against all overloads, including arcs and shorts, fuses, surge-limiting resistors, and low-energy components provide ultimate protection. $$I = 4571(A) Z_0 = 35.0 (Ohms)$$ $$C = \varepsilon A/d = 8.854 \times 10^{-12} \times 0.08/0.01 = 70.8 (pF)$$ $$E = \frac{1}{2}CV^2 = 0.5 \times 70.8 \times 10^{-12} \times 80000^2 = 0.223(J)$$ - ■There are several varieties of magnetic septa: - direct-drive DC septum magnet, - direct-drive pulsed septum magnet, - ■eddy-current septum, - **■** Lambertson magnet - ■The main difference between a dipole magnet and a magnetic septum is that the magnetic septum has a field-free region and a homogeneous dipole field region, separated by a relatively thin septum; - ■As a consequence of the relatively thin septum there is often a high current density in the septum conductor. #### **Technology considerations:** - Leakage field Pure iron plate for leakage field screening; field clamp at ends; - Coils insulation and deformation Polymide tape and fiberglass tape; Coil deformation control; - Heat loads - Water cooling; Temperature detect switch; Coil voltage variation monitoring (if necessary). - ■Two half yokes of steel laminations; - ■8 mm square section conductor with a ø 5 mm water cooling hole; - ■Coil assemly vacuum moulded (impregnated); - ■Pure iron plate for leakage field screening; | Length (mm) | 800 | |---------------------------------|-----------------------| | Deflection angle (rad) | 334 | | Field (T) | 10154.1 | | Gap (mm) | 40 | | Ampere turns | 32981.3 | | Turns | 16 | | Septum thickness (mm) | 42 (nominal45) | | Current (A) | 2061.33 | | Septum conductor dimension (mm) | 8×8, water channelf5 | | Return conductor dimension (mm) | 16×8, water channelf5 | | Current density (A/mm2) | 46.463 | | Coil resistance $(m\Omega)$ | 15.8 | | Voltage (V) | 32.57 | | Power (kW) | 67.14 | | Inductance (uH) | 739.7 | | Coil time constant (ms) | 61 | | Water pressure drop (kg/cm2) | 1.3 | | Water velocity (m/s) | 4.0 | | Water channel | 16 | | Water flux (l/s) | 1.257 | | Temperature rise (°C) | 12.7 | | Magnet length (mm) | 896 | | Core weight (kg) | 758 | | Coil copper weight (kg) | 224.5 | Megnetic field calculation: the deflection angle is 130 mrad,, the effective length is 0.4 m, $$\gamma = E/E_0 = 0.25/0.938272013 + 1 = 1.2664472525$$ $$\beta = \sqrt{1 - \gamma^{-2}} = 0.61360844$$ $$B = 1.1883 \times 0.13 \times 0.61361/0.2998/0.4 = 0.79044(T)$$ The Ampere turns calculation: Suppose the gap height is 40mm, and 8 turns coils $$NI = \frac{0.79044 \times 0.04}{4 \times \pi \times 10^{-7} \times 0.98} = 25674(AT)$$ Here we have a magnetic efficiency of 0.98, so the current is $$I = \frac{NI}{N} = \frac{25674}{8} = 3209(A)$$ Septum current density $$j = \frac{I}{S} = \frac{3209}{44.365} = 72.34 \, (A/mm^2)$$ Copper electrical resistivity $0.01826\Omega \cdot mm^2/m$, and the resistance is $$R_{8turns} = 5.38 \qquad (m\Omega)$$ The voltage of coils $$V = 3209 \times 5.38/1000 = 17.25 (V)$$ The coil power $$P = 3209^2 \times 5.38/1000 = 55.36 (kW)$$ #### Extraction Magnetostatic Septa #### Magnetic analysis Water cooling the coil, the pressure drop is 0.85 kg/cm2, and the flow velocity $$v = \left(\frac{\Delta P d^{1.25}}{0.28L}\right)^{\frac{1}{1.75}} = \left(\frac{0.85 \times 5^{1.25}}{0.28 \times 1.97}\right)^{\frac{1}{1.75}} = 4.0 (m/s)$$ here L is cooling circuit length, and d is the diameter, q is the flow rate $\frac{\chi_{\text{coord}}}{1050}$ $\frac{1050}{1050}$ $\frac{1250}{1050}$ $\frac{1350}{1050}$ $\frac{1450}{1050}$ $\frac{1650}{1050}$ $\frac{1750}{1050}$ $$q = 8 \times \frac{\pi}{4} d^2 v \times 10^{-3} = 0.6283(kg/s)$$ coil power is 55.36 KW, temperature increase is $$\Delta T = \frac{P}{4.2q} = \frac{55.36}{4.2 \times 0.6283} = 21.0(^{\circ}C)$$ UNITS Imm Flux density glaus Field strength oersted Potential glaus-ce Conductivity S. cer Source density: A mer Power W Farce N Energy J Mass In PROBLEM DATA O Icalculations/aptdexice/do septumismulation/ead ms-1 es/201405 st Linear elements XY symmetry Vector potential Magnetic fields Static solution Scale factor: 1,0 17192 elements 8717 nodes 11 regions 30/Jun/2014 21:58:28 Page 128 #### Opera UNITS Length mm Flux density gauss Field strength cersite Potential gauss Conductivity S cm Source density: A mm Power Force N Energy J PROBLEM DATA D 'calculations's gridevice'ds septumalimidationless ms.1 esi201406 st Linear elements XY symmetry Vector potential Magnetic fields Static solution Scale factor: 1,0 171952 elements 8717 nodes 11 regions Opera Typical technical data for a direct-drive DC septum magnet are - magnetic length per magnet yoke in the range 400 mm to 1200 mm; - ■gap height of 25 mm to 60 mm; - ■septum thickness of 6 mm to 20 mm; - ■outside vacuum; - ■laminated steel yoke; - multi-turn coil, with water cooling circuits (flow rate: 12 l/min. to 60 l/min.); - ■current in the range 0.5 kA to 4 kA; - **■**power supplied by controllable rectifier; - ■power consumption: up to 100 kW! - ■Thus cooling of a DC septum is a significant issue. Typical technical data for a direct-drive DC septum magnet are - ■The septum conductor is typically 6 mm to 20 mm thick: the current density in the septum conductor can be as high as 85 A/mm2. - ■A magnetic screen may be used to further reduce the leakage field into the circulating beam region. - ■A DC septum magnet is often used outside vacuum: in this case the coil and the magnet yoke can be split in two, an upper and a lower part, to allow the magnet to be 'clamped' over the vacuum chamber. - An eddy-current septum is powered with a half or full sine wave current with a period of typically 50 μs. - ■The coil is generally constructed as a single-turn, so as to minimize magnet self inductance. - ■The coil is situated around the back leg of the C-shaped yoke, and therefore coil dimensions are generally not critical. - ■When the magnet is pulsed, the magnetic field induces eddy currents in the septum, counteracting the fringe field created. - ■The septum conductor can be made thinner than for the direct drive septum, but cooling circuits may be needed at the edges to cool the septum. - ■The field in the septum gap as function of time follows the coil current. - ■The electrical resistance of the septum is kept low: once the septum current is flowing, it takes quite some time to decay away. - ■magnetic screen: a typical maximum leakage field would be 10% of the gap field - ■In addition a magnetic screen can be added next to the septum conductor. These modifications permit the fringe field, seen by the circulating beam, to be reduced to below 0.01% of the gap field at all times and places. Excitation current wave form: half sine: $$I = 8691.6 \sin(2 \times \pi \times 8333.3 \times t) (0 \le t \le 60 \mu s)$$ Stored energy $$E = 2 \times 0.6845 \times 80 = 109.52(J)$$ Magnetic inductance $$L = \frac{2 \times E}{I^2} = \frac{2 \times 109.52}{8691.6^2} = 2.9 \,(\mu H)$$ #### COIL DEFORMATION, THERMAL ANALYSIS Typical technical data for an eddy-current septum are - ■magnetic length per magnet yoke in the range 400 mm to 800 mm; - ■gap height of 10 mm to 30 mm; - ■septum thickness of 1 mm to 3 mm; - vacuum of $\sim 10^{-9}$ mbar, or out of vacuum; - ■steel yoke with 0.1 mm to 0.35 mm thick laminations; - ■single-turn coil, with water cooling circuits (flow rate: 1 l/min. to 10 l/min.); current of ~10 kA peak; - ■fast pulsed with 50 µs period; - ■powered with a capacitor discharge: half-sine or full-sine wave. # Kicker/bumper magnets - Window frame, ferrite core; - Ceramic vacuum chamber; - Coating/no coating in the inner surface of vacuum chamber; - Single turn coil of copper plate; ### Kicker/bumper magnets Beam energy 7 MeV, kick angle 30 mrad, magnetic length 0.20m, gap height 0.08m, magnetic efficiency 0.98, then the magnetic flux density $$B = 0.945272 \times 0.03 \times 0.121473/0.2998/0.2 = 574.5$$ (Gauss) #### The peak current $$I_m = 0.05745*0.08/\mu_0/0.98 = 3732(A)$$ #### Current waveform $$I = 3732\sin(2\pi *12500*t), \quad 0 \le t \le 40us$$ | Deflection angle (myed) | 30 | |-----------------------------|--------------| | Deflection angle (mrad) | 30 | | Effective length (mm) | 200 | | Magnetic field(Gauss) | 574.5 | | Beam stay clear H*V (mm*mm) | 100 × 60 | | | | | gap (mm) | 80 | | turn | 1 | | efficiency | 0.98 | | inductance(uH) | 0.38 | | Peak current(A) | 3732 | | Waveform/width(us) | half sine/40 | | repetition(Hz) | 0.1~0.2 | | Charge voltage (V) | 258 | 16/3/2020 15:45:56 3.000000E+002 2.000000E+002 1.000000E+002 1,367697E+001 Integral = 1.474374E+001 13/40240 a demonstrate Oper UNITS Length on Plus density gaus Field strength osers! Potential gaus Conductivity 5 cn Source density A on Power W Force N Energy J Mass kg PROBLEM DAT Dricalculations/opera kers/Protonbumper/br Linear elements XY symmetry Vector potential Magnetic fields Transiert solution Case 11 of 21 Time: 2.00-05 s 18764 elements 9443 nodes 5 regions #### Magnetic field simulation | Length | B. | |-------------------|----------| | Magn Flux Density | gauss | | Magnetic Field | oersted | | Magn Vector Pot | gauss cr | | Current Density | A/n2 | | Electric Field | V/n | | Electric Pot | volt | | Conductivity | S/a | | Power | ¥ | | Force | N | FOODER DATA Kickerddwardesign00000227.op3 HEEFER Transient Time = 1.0e -0-04 Monlinear materials Simulation Ro 21 of 33 996050 elements 1107415 edged 1 conductor 1107415 edged Activated in global coordinates Reflection in XY plame (2 field=0) Reflection in XY plame (2 field=0) Reflection in XY plame (2 field=0) MODEL DATA Field Point Local Coordinates Local = Global FIELD EVALUATIONS Cartesian CARTESIAN y=0.0 z=0.0 #### Opera | CRITIC | | |--------------------|-------| | Legth | | | Rago First Dentity | T | | Regnetic Field | 4/4 | | Rago Yactur Put. | This. | | Current Descript | 4/47 | | Biscuric Field | Y/a. | | Electric Per | mile. | | Conductivity: | 1/4 | | Forest | | | Force | | | Inserge | 2 | NOME. CATE At the Parameter (application) replication in the parameter (application) replication replication of the parameter (application) replication replication in the parameter (application) replic BODGE DATA Field Peint Lecal Coordinates | 3 | Ļ. | * | 17 | | 100 | - | | | |-----|----|----|----|----|-----|----|----|---| | - 1 | | | | | = | | | | | :11 | ш | н. | | ** | NU. | ** | FH | P | | Line | LIME (hods))
s=0.055 to | \$100.00
\$100.00 | Carterio
pricit | |-----------|----------------------------|----------------------|--------------------| | Cartesian | CATTISTIA
(bodal) | 110100 | Carrect | | | 9010, 200 to
0.598 | 946.0 | 447.0 | Opera #### Kicker/bumper magnets #### Magnetic inductance is $$L_m = \mu_0 A/(g + l/\mu) = 0.459 (\mu H)$$ $$L_m = \frac{2 \times E}{I^2} = \frac{2 \times 20 \times 0.163}{3732^2} = 0.468 (\mu H)$$ The total inductance after considering some stray inductance $$L = L_m + L_s = 0.47 + 0.5 \approx 0.97 \,(\mu H)$$ #### Peak voltage $$U_m = L * 2\pi f * I_m = 0.97 * 2\pi * 12500 * 3732/1000000$$ = 284.3 (V) ### Kicker/bumper magnets #### SUMMARY OF TYPICAL FERRITE PROPERTIES #### Mn-Zn FERRITES | Property | <u>Symbol</u> | <u>Unit</u> | MN95 | MN98 | MN67** | MN92 | MN8TC | MN80C | MN90 | MN8CX | MN30 | BT100* | TC6000* | XTC5* | MN60 | MN100** | MC25* | MC15K* | |-------------------------|---------------|-------------|------|------|--------|------|-----------------|-------|-------|-------|------|--------|---------|-------|------|---------|--------|--------| | Initial Permeability | μ | - | 1000 | 1100 | 1100 | 1200 | 1900 | 2050 | 2500 | 3100 | 4300 | 4700 | 7500 | 6000 | 6500 | 9,000 | 9500 | 15,000 | | Maximum Permeability | μm | - | 6800 | 4500 | 7500 | 8000 | 6000 | 5000 | 6200 | 3700 | 7500 | 6400 | 13000 | 9300 | 8500 | 11,500 | 12,000 | 20,000 | | Saturation Flux Density | Bs | Gauss | 5000 | 4800 | 5250 | 4800 | 4600 | 4900 | 4200 | 4500 | 4400 | 4500 | 3600 | 4500 | 4500 | 4700 | 3800 | 3900 | | Remanent Flux Density | Br | Gauss | 2000 | 3600 | 2100 | 2100 | 1750 | 1600 | 600 | 850 | 750 | 1000 | | | 800 | 600 | | | | Coercive Force | Hc | Oersted | 0.14 | 0.29 | 0.15 | 0.12 | 0.15 | 0.18 | 0.085 | 0.20 | 0.07 | 0.12 | | | 0.08 | 0.03 | | | | Curie Temperature | Tc | °C | 275 | 265 | 285 | 275 | 185 | 230 | 215 | 195 | 170 | 175 | 104 | 165 | 170 | 170 | 120 | 120 | | dc Volume Resistivity | Þ | ohm-cm | 2500 | 5000 | 250 | 325 | 10 ³ | 1600 | 4000 | 1200 | 150 | 200 | 5 | 60 | 500 | 200 | 149 | 10 | | Bulk Density | ρ | g/cc | 4.7 | 4.7 | 4.7 | 4.7 | 4.5 | 4.75 | 4.42 | 4.7 | 4.75 | 4.85 | 4.85 | 4.83 | 4.8 | 4.8 | 4.9 | 4.85 | ^{*} available only in pressed & fired parts ** available only in machined parts #### Ni-Zn FERRITES | Property | Symbol | <u>Unit</u> | <u>N40</u> | C2075 | XTH2 | C2050 | <u>xck</u> | C2025 | CM48 | CM5 | C2010 | CM400 | CMD10 | CN20 | CN20B | CMD5005 | |-----------------------|---------|-------------|------------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|-----------------|-----------------|------------------|------------------|------------------|-----------------|------------------| | Initial Permeability | μ | - | 15 | 50 | 80 | 100 | 125 | 175 | 190 | 290 | 340 | 400 | 625 | 925 | 1375 | 2100 | | Maximum Permeability | μm | - | 50 | 270 | 440 | 600 | 350 | 850 | 1300 | 1200 | 1500 | 1600 | 3000 | 5000 | 4100 | 5500 | | Maximum Flux Density | B_{M} | Gauss | 2500 | 3000 | 3600 | 3700 | 2500 | 3900 | 4400 | 3100 | 3900 | 4600 | 4300 | 4000 | 3500 | 3300 | | Remanent Flux Density | Br | Gauss | 950 | 950 | 1200 | 2300 | 650 | 2500 | 3000 | 1700 | 2800 | 2400 | 2900 | 2600 | 2100 | 1300 | | Coercive Force | Hc | Oersted | 8.00 | 2.60 | 2.00 | 2.00 | 0.95 | 1.40 | 1.00 | 0.65 | 0.70 | 0.65 | 0.36 | 0.20 | 0.20 | 0.12 | | Curie Temperature | Tc | °C | 600 | 420 | 300 | 340 | 400 | 270 | 410 | 280 | 245 | 300 | 250 | 185 | 160 | 130 | | dc Volume Resistivity | Þ | ohm-cm | 10 ¹⁰ | 10 ⁹ | 10 ⁸ | 10 ⁹ | 10 ⁹ | 10 ¹⁰ | 10 ¹⁰ | 10 ⁸ | 10 ⁷ | 10 ¹⁰ | 10 ¹⁰ | 10 ¹⁰ | 10 ⁸ | 10 ¹⁰ | | Bulk Density | ρ | g/cc | 4.8 | 4.6 | 4.6 | 4.6 | 4.25 | 4.7 | 5.2 | 4.4 | 5 | 5.15 | 5.2 | 5.24 | 5 | 5.27 | #### Summary - ■Because of the time limit, a lot of topics aren't covered; - ■Injection and extraction device design, especially kicker and bumper, must be well integrated with its matching power supplies; and some accelerator physics knowledge is necessary. - ■Septa design is a very complicated engineering thing, it involves many subjects such as accelerator physics, electrical engineering, material science, mechanics, and vacuum knowledge; - ■Last but not least, engineering know-hows are very important, you can get them from practicing or/and from others. Thank you for your attentions! Any questions?