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Outline
◼ Field Theory of Guided Waves - 1. Modes in a Waveguide

◼ Field Theory of Guided Waves – 2. Modes in Cavities

◼ Cavity Power Loss and Q

◼ Parameters of an Open-End Cavity

◼ Critical Coupling, Undercoupling, and Overcoupling

◼ Cavity application – SLED

◼ Microwave Tubes

◼ Line-type Modulator of Klystron
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Frequency Bands for Household Electronics

AM broadcast band: 535-1605 kHz

Shortwave radio: 3-30 MHz

FM broadcast band: 88-108 MHz

VHF TV (channel 2-4): 54-72 MHz

VHF TV (channel 5-6): 76-88 MHz

UHF TV (channel 7-13): 174-216 MHz

UHF TV (channel 14-83): 470-890 MHz 

Microwave Bands

              L-band: 1 - 2 GHz               K-band: 18 - 26.5 GHz 

              S-band: 2 - 4 GHz               Ka-band: 26.5 - 40 GHz

              C-band: 4 - 8 GHz               U-band: 40 - 60 GHz 

              X-band: 8 - 12 GHz             V-band: 60 - 80 GHz 

Ku-band: 12 - 18 GHz         W-band (IEEE): 80 - 100 GHz 
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Field Theory of Guided Waves - 1. Modes in a Waveguide
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Modes in Waveguides (continued)
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     Similarly, 

    (9) 0                                 (12b)

     (12a,b) have the same form as the wave equations in infinite space.

However, (12a,b) are now subject to boun

   + =B B

dary conditions on the walls.

Most wave problems involving a boundary do not have exact solutions.

The waveguide structure offers a rare case where exact solutions are 

possible (in particular, for rectangular and circular cross-sections). The

structural uniformity in  suggests a solution with  dependence.zik z
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 constants. To be specific, 

. Then, 
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respectively. As will be seen in (30
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     It is in general not possible to ob

     Thus,
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  0   (8.19)
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     Rewrite   
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Discussion:

(i) Et, Bt, Ez, Bz in (8.26a) and (8.26b) are functions of xt only.

(ii)  and  can be complex. Im() or Im() implies dissipation.

(iii) By letting Bz = 0, we may obtain a set of solutions for Ez, Et,

and Bt from (14), (8.26a), and (8.26b), respectively. It can be

shown that if the boundary condition on Ez is satisfied, then

boundary conditions on Et and Bt are also satisfied. Hence, this

gives a set of valid solutions called the TM (transverse

magnetic) modes. Similarly, by letting Ez = 0, we may obtain a

set of valid solutions called the TE (transverse electric) modes.

(iv) Ez is the generating function for the TM mode and Bz is the

generating function for the TE mode. The generating function

is denoted by Ψ in Jackson.

Modes in Waveguides (continued)
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2

( ) 0 with boundary condition 0                  (21)

                                                                         (21a)
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TM Mode of a Waveguide (Bz = 0): (see pp. 359-360)

TE Mode of a Waveguide (Ez = 0): (see pp. 359-360)
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Discussion:

(i) Either (21) or (22) constitutes an eigenvalue problem (see

Electrodymanics (I) lecture notes, Ch. 3, Appendix A). The

eigenvalue 2 will be an infinite set of discrete values fixed by

the boundary condition, each representing an eigenmode of

the waveguide (An example will be provided below.)

(ii) (21b) and (22b) show that E is perpendicular to B (also true in

a cavity).

(iii) (21b) and (22b) show that Et and Bt are in phase if , , , kz

are all real (not true in a cavity).

(iv) (21c) [or (22c)] is the dispersion relation, which relates  and

kz for a given mode.

(v) The wave impedance (Ze or Zh) gives the ratio of Et to Ht in

the waveguide.

Modes in Waveguides (continued)



TEM Mode of Coaxial and Parallel-Wire Transmission Lines                 

(Ez = Bz = 0): (see Jackson p. 341)

 
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2 2

2 2

           (8.26a)

     Rewrite 

      (8.26b)

     These 2 equations fail for a different class of modes, called the
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2

romagnetic) mode, for which 0.

However, they give the condition for the existence of this mode:

Equations in rectangular boxes are
                   

basic equations for the TEM mode.

z z

z

E B

k
 

= =

 
=
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  (8.27)

     (8.27) is also the dispersion relation in infinite space. This makes

the TEM mode very useful because it can propagate at any frequency.

     To calulate  and , we need to go back to Mat tE B xwell equations. 
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                           ( ) ( ) .
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TEM

TEM TEM

2

     In summary, the TEM modes are governed by

( ) 0                                                                   (23)

( )                                                  
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where  ( ) is the (intrinsic) admittance of the filling medium, 

which is defined in Ch. 2 of lecture notes following Eq. (26).

     Since  and  are both , the Poynting

     

z
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Re , is in the  direction.

      If an electron moves from 0 to ,  

                     does its energy change by ?

:

[ ]

t

z
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 

TEM

TEM TEM

2

     :
  
    (i) For the TEM modes, we solve a 2-D equation ( ) 0

for ( ). But this is not a 2-D problem because  is not the

( , )
full solution. The full solution is 

( , )

t t

t

t
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Discussion
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 
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( )
 

( )
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     For an actual 2-D electrostatic problem [ ( ) ( )], we have

( ) 0,  which gives the full solution ( )

z

z
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t
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e

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( ). 

   (ii) Note the difference between the scalar potential discussed here 

and those defined in electrostatics and electrodynamics.

( ) ( ),  regard  as a mathematical tool.

( )

t

t t t



= −  
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x
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( , )

( ) [electrostatics], regard  as a physical quantity.

( , ) ( , ) ,  regard  and  as mathematical tools.
t
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 z
x

y

2 2

2

     : TE mode of a rectangular waveguide

     Rewrite the basic equations for the TE mode:

( ) ( ) 0 with boundary condition 0 (22)

( ) ( )                  (22a)

     

t z t zn s

z
t t t z t

Example 1
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
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=  
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2 2 2

( ) ( ) ( )                         (22b)

                                                                      (22c)

     Rectangular geometry Cartesian syste
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z

z

Z
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 



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
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2
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m

     Hence, the wave equation in (22) becomes: 

     ( , ) 0                                  (24)

t
x y
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x y

k H x y

 

 

 
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  
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 z
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     Rewrite (24):    ( , ) 0             (24)

     Assuming  dependence for ( , ), we obtain     

     ( , ) 0

     In order for ( ,

x y

z z
x y

ik x ik y

z

x y z z

z

k H x y

e H x y

k k k H x y

H x y





 

 

+

 + + − =
  

 − − − =
 

2 2 2 2

) 0, we must have

            0,

which is satisfied for , , . Since ( , ), 

( , ),  and ( ,  ) are all linearly independent pairs,

the full solution f

x x

y y z z

x y z

ik x ik x
x y z

ik y ik y ik z ik z

k k k

k k k e e

e e e e



−

− −



− − − =

  

1 2 1 2

                                             

or  is

       ( , )

                       (25) 

y yx x

z z

z

ik y ik yik x ik xi t
z

ik z ik z

H

H t e A e A e B e B e

C e C e

 −−−

−
+ −

  = + +
   

  +
 

x

Modes in Waveguides (continued)
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x

y

a0

b

1 2 1 2

1 2 1 2

1 2 1 2

     Applying boundary conditions [see (22)] to ( , ) in (25):

( 0) 0 0

( 0) 0 0

y yx x z z

z

ik y ik yik x ik x ik z ik zi t
z

z x xx

z y yy

H t

H e A e A e B e B e C e C e

B x ik A ik A A A

B y ik B ik B B B

 −− −−
+ −







    = + + +
    

 = =  − =  =


= =  − =  =


x

( , ) cos cos

( ) 0 sin 0 ,  0,1,2,
 

( ) 0 sin 0 ,  0,1,2,

( , ) cos cos             (2

z z

z z

i t ik z i t ik z
z x y

z x xx

z y yy

ik z i t ik z i t
z

H t k x k y C e C e

B x a k a k m a m

B y b k b k n b n

m ym xH t C e C ea b

 

 







− + − −
+ −







− − −
+ −



  = +
 

 = =  =  = =


= =  =  = =

  = +
 

x

x

2 2 2 2

2

forward wave backward wave

6)                                                                                  

     Sub. ,  into 0,  we obtain

                

x y x y z
m n
a b

k k k k k

k

  



= = − − − =

−
2 2

2 2
2 2 0,  , 0,1,2,                  (27)( )z

m n

a b
m n− + = =

Modes in Waveguides (continued)
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 

2 2

2 2

2 2

2 2

2 2 2

2 2 2

1/ 2

for complex  and 

     Rewrite 0 [(27)] as      

0 ,                              (28a)

where  ( ) ,   , 0,1,2,                             (28

( )z

z cmn

cmn

m n

a b

m n

a b

k

k

m n


 

 

 



− − + =

− − =

= + = b)

     (28) is the exact expression of the TE  mode dispersion relation 

for a rectangular waveguide with infinite wall conductivity and a  

uniform dielectric filling medium of (in general complex)  

mn

 and .

     Each pair of ( ,  ) gives a normal mode (TE  mode) of the 

waveguide. The mode indices  and  cannot both be 0, because 

that will make the denominator in (22a) vanish.

     : Un

mnm n

m n

Special case



 

2

0 0

0 0

2 2 2 2

2 2 1/ 2
2 2

1

for unfilled waveguide

filled waveguide (i.e.  and )

     We have , and (28a,b) can be written 

                 0   ,            (29a)

where       ( ) ,

z cmn

cmn

c

m n
a b

k c

c

   

  

 

 

= =

= =

− − =

= +   , 0,1,2,                         (29b)m n =

Modes in Waveguides (continued)



zk



cmn

1
2

2 2

2 2

2 2 2 2 0
     Rewrite 

     :

real propagating waves
    

imaginary evanescent fields.

wa2free space wavelength  

    

( )

z cmn

cmn

cmn z

cmn z

f

m n

a b

k c

c

Definitions and terminology

k

k

c

 

 

 

 

 

 − − =


=

  = 


  = 

= 

+

velength of an EM
wave in free space

wavelength of the TE2guide wavelength  
wave in the waveguide

lowest  allowed to enter the waveguide
cutoff frequency as a TE  wave,

    

mn
g

cmn
mn

zk





  
   


  = 
  

=  i.e. when 0 ( )

longest  allowed to enter the2cutoff wavelength  
waveguide as a TE  wave

gz

f
c

mncmn

k

c



 

= 
  

=    


  =      22

          
f c 

evanescent fields

f
g

TE  wavemn

Modes in Waveguides (continued)



Question 1: Why a typical waveguide has a = 2b? (discussed below)

Question 2: Can we use a waveguide to transport waves at 60 Hz?
23

 

 

1
2

2 2

2 2

2 2 2 2 0

2  wavelength of an EM wave in free space Rewrite 
2  wavelength of the TE  wave in the waveguide

longest  allowed to enter the waveguide2  
as a 

( )

z cmn

cmn

f

g mn

f
c

m n

a b

z

cmn

k c

c

c

k

c

 

 

 


 

− − =

=

=

=

=

+

TE  wavemn









  
   

f
g

TE  wavemn

(c = 0.9

(c = 2a)
01 20TE , TE  ( )c a =

10    TE  ( 2 )c a =

11 TE  ( 0.9 )c a 

 zk

usable bandwidth ( 2 )fa a 
 

10TE mode 

2
ab =

    a

E
B

Use (22a, b)
1;  0m n= =

Modes in Waveguides (continued)
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 

2

2 2 2 2

2

for unfilled waveguide

     :

     (1) Rewrite (29a): 0   

            [phase velocity]

           (29a)  2 2 0

    group 

z

z z

z

z

z cmn

ph

z

g

k
d d

dk dk

k cd
dk

Other quantities of  interest

k c

v c

k c

v








 



− − =

 = 

 − =

 = =  

2 cmn

cmn

 velocity       

 as  
    (i) ;   (ii) ;  (iii) 

0 as 

     (2) The remaining field components ( ,  ,  ,  and ) can 

be obtained from ( , ) through

     ( , )

ph
g ph g

g

x y x y

z

t
z

v
v c v v c

v

E E H H

H x y

ik
x y

 
 

→  →
  =  → →

= H
2

( , )              (22a)

     ( , ) ( , )                                                    (22b)

: The upper (lower) sign  forward (backward) wave. We have

assumed Re[ ]>0. Since

t z

t z t

z

z

H x y

x y x y
k

Note

k






= 



E e H

 there is no loss,  is a real positive number.zk

zk



cmn
zk

c 

0 0

2

2
2 2 2

see (22c) and (29).

cmn
z c

k


    
= − =

 
  

Modes in Waveguides (continued)
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     (3) Wall current

      There are currents in the conductor flowing within a skin depth.

When we apply boundary conditions to calculate the fields, effects 

of the wall currents are automatically accounted for

     The wall current is given by

         (on the wall surface) 

See lecture notes, Ch. 2, Eq. (29)
     

or Jackson Eq. (8.14)

     For infinite conductivity, the skin depth is zer

ts = 

 
  

J n H

o. Hence, the wall

current is a surface current.

n (on the wall
     surface)

tH

Modes in Waveguides (continued)
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TE mode field patterns of rectangular waveguide

c     from E. L. Ginzton, "Microwave measurements". : cutoff frequency
      solid curve: -field lines; dashed curves: -field lines



E B

Modes in Waveguides (continued)
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TM mode field patterns of rectangular waveguide

cfrom E. L. Ginzton, "Microwave measurements". : cutoff frequency
      solid curve: -field lines; dashed curves: -field lines



E B

Modes in Waveguides (continued)
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 zk

 

(c = 0.9a)

(c = a)

(c = 2a)
01 20,  ( ) cTE TE a =

10     ( 2 )cTE a =

11  ( 0.9 )     cTE a 

bandwidth ( 2 )fa a       usable 

1
2

10
1
2

:

     If , there is a maximum usable bandwidth ( 2 ) over

which only the TE  mode can propagate (no mode conversion). A

typical waveguide has  for 

f

     Discussion  waveguide and microwaves

b a a a

b a

  

=

10

maximum power capability & usable

bandwidth. Microwaves are normally transported by the TE  mode

in the usable bandwidth. Waveguides come in different sizes. Usable 

bandwidths of practical waveguide dimensions (0.1 cm 100 cm)

cover the entire microwave band (300 MHz to 300 GHz). 

     The waveguide is capable of handling much higher power than the

coaxial transmission lines. In a high-power radar sy

a 

stem, for example, 

it is used to transport 

microwaves from the 

generator to the antenna.

 z
a

2
a

Modes in Waveguides (continued)



Some Standard Size Waveguides

Whittum, D.H. (1999). Introduction to Microwave Linacs. In: Ferbel, T. (eds) Techniques and Concepts of 

High Energy Physics X. NATO Science Series, vol 534. Springer.

Modes in Waveguides (continued)



TM Waves in a Circular  Waveguides

Consider TM waves of a circular waveguide in vacuum with inner diameter :

  022 =+ zt E

0=
=arzE

Solutions for Ez are:

( ) ( ) ( )tzkjim

mnmzz
zeeJEE

 −−= ˆ,

and the corresponding eigenvalues are: 

a

xnm
mnmn == 

mn are the cutoff frequency of the TMmn waveguide modes, 

xmn are the roots of the Bessel function 

no. of 

roots

J0(x) J1(x) J2(x)

1 2.4048 3.8317 5.1356

2 5.5201 7.0156 8.4172

3 8.6537 10.1735 11.6198

z

r = a

2

2

2

2 11




 


+
















=t

Modes in Waveguides (continued)



We consider the example of  a rectangular cavity (i.e. a rectangular 

waveguide with two ends closed by conductors), for which we have

two additional boundary conditions at the ends: 0 and .

     

z d=

     

0

Rewrite (27):  cos cos  

     b.c. (i): ( 0) 0  

cos cos sin

     b.c. (ii): ( ) 0

sin 0  ,  1, 2,                       

z zik z i t ik z i t
z

z

i t
z z z

z

z z

m x n y
a b

m x n y
a b

l
d

H C e C e

H z C C

H H e k z

H z d

k d k l

 



 

 



− − −
+ −

+ −

−

 = +
 

= =  = −

 =

= =

 =  = =

12 2
2

2 2

2 2 2

2 2 2

0

2 2 2 2

1/ 2 : re

                        (32)

, 0,1,2,
cos cos sin ,         (33)

1,2,

     Sub. (32) into 0,  where 

 

( )

( ) mnl

i t
z z

m n
z cmn cmn

a b

m n l
mnl

a b d

m x l zn y
a b d

m n
H H e

l

k c c

c

  



   

  

− = 
 =

 = 

− − = = +

 = = + +
sonant frequency

         of the TE  mode
        (34)

mnl

 
  

Field Theory of Guided Waves – 2. Modes in Cavities
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x

y

z

a0

b
d

a rectangular cavity



( )

( )

( ) tj

lmnmz

mn

l

tj

lmnmz

mn

l
r

tj

lmnmzz

zekmrkJE
rk

mk
E

zekmrkJE
k

jk
E

zekmrkJEE















sinsinˆ

sincosˆ

coscosˆ

2
−=

−=

=

( )

( )

0

coscosˆ

cossinˆ
2

=

=

=

z

tj

lmnmz

mn

tj

lmnmz

mn

r

B

zekmrkJE
ck

j
B

zekmrkJE
crk

m
B












22

2








+








=

a

x

d

lc
f mn

mnl




for TM01-modes x01=2.405

 0  . .  :  0,  ,r dEEnd wall b c tE a z = ==

TM Modes in a Cylindrical Cavity

Modes in Cavities (continued)

  . . :  0 ,  zSide wall b c at aE r= =

 /     0,1,2,   and mn mn

l mn

x
k l d l k

c a
where


= = = =

( )    m

th xthe n ze o o Jr f



TE Modes in a Cylindrical Cavity

Modes in Cavities (continued)

( )

( )

( ) tj

lmnmz

mn

l

tj

lmnmz

mn

l
r

tj

lmnmzz

zekmrkJB
rk

mk
B

zekmrkJB
k

k
B

zekmrkJBB















cossinˆ

coscosˆ

sincosˆ

2
−=

=

=

( )

( )

0

sincosˆ

sinsinˆ
2

=

=

=

z

tj

lmnmz

mn

tj

lmnmz

mn

r

E

zekmrkJB
ck

j
E

zekmrkJB
crk

mj
E












22

2








+








=

a

x

d

lc
f mn

mnl





  . . :    0,z rSide wall b c at r aB B  ==

 /     0,1,2,   and l mn mnk l d l k x awhere  = = =

( )    m

th xthe n zer of Jo 

 0  . .  : ,  ,   0zEnd wall b c at z dB ==



Higher Order Modes for a Cylindrical Cavity
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Cavity Power Loss and Q

35

      Waves in a waveguide. Hence, its

attenuation is represented by a complex . Since fields are 

in a cavity, any loss results in damping in time. The damping is the
z

propagates 

k stored

Definition of Q :

0
0

n

represented by a complex . We consider only the wall loss for now.

     Assume fields at any point in the cavity have the time dependence:

,                                            
    ( )

i t
E e

E t





−

= 0 0
0 0

0 0

0

0

( ) ( )
2 2

          
     (8.88)

,      

where  is the resonant frequency [e.g. (34)] without the wall loss. 

     (8.88) assumes that the wall loss modifies  by

i i t i t t
Q QE e E e

 
   









− + − − + −

 = 


 =  

0

2

 a small real

part  and a small imaginary part , where  and  are to be

dertermined.  

     Δ :  Effective cavity size increases by 

(skin depth ). A larger cavity has a lower

Q
Q

Physical reason for ω


 



 

 frequency. Hence, 0.

     :  Ohmic dissipation on the wallPhysical reason for Q

 



0*

0

0

2

0

0

2
stored energy in the cavity 

   

    [power loss]         (8.87)

stored energy
  [time-space definition of ]   (8.86)

power loss

     (8.88) represent

[ ]i Q

Q

t

t

ti t i t

Q
dU U
dt

U E e

U e

Q Q

e e e


 







−

−

−=  

=

 = −

 =

 = =

0
02

1

2

( )
1 1

0 02 2

01

2
0

s a damped oscillation which does not have a 

single frequency. To exame the frequency of ( ). we write 

( ) ( ) ,

where

( ) ( )

(

Q

i t

t i ti t

E t

E t E e d

E E t e dt E e dt

E

i







  

 



 



 

 −

−

− + − − 

−

=

= =

=
− − − 



 

0

2
)

Q


 +

Cavity Power Loss and Q (continued)
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0
0

0

( )
2

0

2

( )
i t t

Q

i Q

t E e


 




− + −

=

 = −

E

Use (8.88), assume E(t) = 0 for t < 0



0      
Q


 =

Fig. 8.8

00

0

0

2

12 2
20 22

     The frequency spectrum is best seen form the field energy 

distribution in -space  

max , 1
( )  (8.90)

max , ( )

full width at 

half-maximum points

( ) QQ

E
 



  


    



= + 
 = 

= +  − −  + 

 
 =

  

0

0

0

0

 [frequency-space definition of ]      (8.91)

     :  is the resonant frequency 

of the cavity in the absence of any loss. 

 is the resonant frequency in 

the presence of losses. In

Q

Q Q

Note








 

=

 =

+ 

 most cases, 

the difference is insignificant. 

Cavity Power Loss and Q (continued)
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0

0 0
0

0
0

      
stored energy

(i) Use the time-space definition: 
power loss

2          2  

stored energy
          

power loss

stored energy
     2     

power loss
d

d

Q

f

Q



  




  

=

= =



 = 

Physical Interpretation of Q :

                                       (48)

     (48) shows that , which results from the power loss, is 

approximately 2  times the number of oscillations during the decay 

time. A larger  value impli

Q

Q



es that the field energy can be stored 

in the cavity for a longer time. Hence,  is commonly referred to as 

the quality factor. However, in some cases such as high-power 

microwave generation, a low  

Q

Q value may often be desired. This is 

arranged not by increasing the Ohmic loss, but by a structure which

couples the wave out of the cavity.

Cavity Power Loss and Q (continued)
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wave period

decay time of stored energy



0      
Q


 =

Fig. 8.8

For a lossy cavity, a resonant mode can be excited not just at

one frequency (as is the case with a lossless cavity) but at a range

of frequencies (). The resonant frequency (0+ see Fig. 8.8)

of a lossy cavity is the frequency at which the cavity can be excited

with the largest inside-field amplitude, given the same source

power. The resonant width  of a mode

is equal to the resonant frequency divided

by the Q value of that mode (see Fig. 8.8).

Note that each mode has a different Q value.

Figure 8.8 can be easily generated

in experiment to measure the Q value.

Cavity Power Loss and Q (continued)
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0(ii) Use the frequency-space definition:  (see Fig. 8.8)Q



=



Cavity Power Loss and Q (continued)
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0

stored energy
                  

power loss

     Using the results of Sec. 8.1, we can calculate Q (but not ) 

due to the ohmic loss. We first calculate the zero order  and  of 

a specific cavity a

Q 



=



E H

23 3
23

23 3
2

2

2

ssuming , then use the zero order  and  

to calculate  and power loss, 

2
      stored energy ( )

2

1
power loss

2

1

2

e

e m

m

s

v v
v

v v

s

s

U

w d x d x
w w d x

w d x d x

da

da











= 

 =
= + = 

=

=

= 

 


 





E H

E

H

J

n H

(6.133)

(8.15)

(8.14)
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     Formulae for  (due to ohmic loss) for rectangular and 

cylindrical cavities can be found in Collin, p. 503 and p. 506. 

      

     If there are several types of powe

Q

Q due to Other Types of Losses :

0

stored energy
(power loss)

r losses in a cavity (e.g. due 

to a lossy filling medium or leakage through a coupling structure), 

 can be expressed as  

                                              
n

n

Q

Q 


=

0

stored energy
(power loss)

               (49)

1 1                                                                        (50)

where  (Q due to the n-th type of power loss) is given by

    

nn

n

n
n

Q Q

Q

Q 

 =

=

n-th type of power loss



Fig. 1. An open-end cavity.

c 

0

     In Ch. 3, we analyzed a simple, fully closed

(ideal) cavity. The modes are standing waves,

each characterized by a resonant frequency ( ) 

and a quality factor ( , due to power losses).

     In real

Q



ity, a cavity is alway connected to the outside in some way. 

Furthermore, it often has a complex shape to optimize its function. 

     Fig. 1 shows a commonly used cavity. It 

has a narrow channel for charged particles 

(but not waves) to pass through, and is   

shaped for the electric field to concentrate  

around a narrow gap, where the field either 

absorbs the electron energy (as in the

klystron) or delivers energy to electrons

or ions (as in an acceleration cavity). In this chapter, we put our focus

on this type of  cavity. However, the theory is general to all cavities. 42

An ideal cavity

10 TE
  

Parameters of an Open-End Cavity



     :

     Assume a mode is present in the

cavity in Fig. 1, the voltage difference  

across the gap is a parameter of  interest.  

Define the gap voltage  as 

     ( )z

V

V E z −

Gap Voltage and Shunt Impedance

  [Gap voltage],                                                 (1)

where the integration is along the -axis.

      Can there be a voltage difference on the same conductor?

     In (1),

:

 

b

a

Questio

z

n

dz

V



 and  are phasors ( -space complex quantities), i.e. in

-space, we have  ( ) Re[ ]  and  ( , ) Re[ ( ) ].

     When  is defined as in (1), the reference polarity [direction of

positive (

z

j t j t
z z

E

t V t Ve E z t E z e

V

V t

 



= =

 
2

2

)] is shown in Fig. 1. Let  be the total power loss in

the cavity (e.g. Ohmic loss). In terms of  and , we define a 

shunt impedance as     Shunt impedance                      (2)

loss

loss

loss

V

P

P

V P

R  43

Parameters of an Open-End Cavity (continued)

Fig. 1

Fringe field
(negligible)

  a
c 

  Axis of 
symmetry

Cylindrical
cavity



      and  are two new parameters not applicable to a fully closed

cavity. On the other hand, the quality factor  are defined in two 

consistent ways as for a closed cavity (Lecture Notes, Ch. 3, Sec

V R

Q

 

 

0

0

. 4):

 -space definition                                               (3)
      

-space definition                                                  (4)

where  is the field energ

 

 

f

loss

f

W

P
Q t

Q

W









=


 =


y in the cavity.

     Parameters , , and  each gives a key property of the cavity:

     1. The gap voltage  ( ( ) ) gives the maximum energy

a charged particle can gain or lose in passing thro

b

a z

V R Q

V E z dz= −

2 2

ugh the cavity.

     2. Assume an RF power ( ) is injected into a cavity to set up a gap 

voltage . In the steady state,  is lost in the cavity. So, we have  

and hence /(2 ) /(2 ). T loss loss

P

V P

P P R V P V P= = = hus,  gives the 

magnitude of the gap volatge  for a given input power .

     3. The  factor gives the resonant bandwidth  through (4).

R

V P

Q  44

Parameters of an Open-End Cavity (continued)



     :

     In an accelerator, the RF power is fed

into the accelaration cavity to maintain a 

gap voltage. For simplicity, we assume that

the electric field in the gap is uniform over

a

Transit Time Factor

 distance  and zero elsewhere (Fig. 2),

,      0
          ( )                                                     (5)

0,           otherwise

    Thus, the electric field is

     ( , ) Re[ (

g
z

z z

d

E d z
E z

E z t E

−  
= 



=

0

12

cos       0
) ]                    (6)

0,                   otherwise

  Assuming that an electron has a constant velocity  and it passes 

the middle plane ( ) at time , we can writ

j t

z

g

d

E t d z
z e

v

z t

  −  
= 



= −

e

0

0 0

1

1

2

2

e its orbit as

                     ( )                                                          (7)

or  as a function of the electron position :               (8)v v

d

dz

z v t t

t z t t

= − + −

= + +
45

Parameters of an Open-End Cavity (continued)

Fig. 1

Fig. 2

zE

z
d− 0



0 0
12

cos       0
( , )                           (6)

0,                   otherwise     Rewrite   

                                                           (8)

      Sub. (8) fo

g
z

v v
dz

E t d z
E z t

t t

 −   
= 


 = +


+

0 10 2

r  in (6), we obtain the gap electric field  seen by 

a charged particle:
cos ( ) ,  0

      (on particle)           (9)
0,                                       otherwise

      Thu

[ ]g

z

z

d
v

t E

E z v t d z
E

 + + −  
= 



s, due to the time variation of ( , ) during the particle's

passage time, the particle does not see a constant , although 

in the gap is spatially uniform at any instant of time.

z

z z

E z t

E E

Parameters of an Open-End Cavity (continued)

Fig. 1 Fig. 2
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zE

z
d− 0



0 1

1

0

0

0

0 0

2

2

2

sin

      The work done by ( , ) on the particle during its passage

through the cavity gap is

   (on electron) cos ( )

       cos cos

[ ]
d dz g

g g

z

d

v

v

v

d

d

E z t

W e E dz eE z v t dz

eE d t eE dM t







 

− −
= − = − + +

 
 = − = −
 
 

 

 

1

0

2

2

sin

                         (10)

 Transit time factor                                      (11)
where 

 Transit angle                                                (12)

      i

g

g

g

g

d
v

M





 









   

0

0

s the total phase variation of ( , ) 

during the particle's transit time ( ). Since 

0,  we always have 1.

     For present-day accelerators, .

g

z
d
v

E z t

M

v c

  


47

Parameters of an Open-End Cavity (continued)
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1

1

     Rewrite                    cos                                    (10)

     Since 1 (see Fig. 3),  the maximum energy gained or lost 

by the particle,  (when cos 1),  in passing 

g

g

W eE dM t

M

eE dM t





= −



=  through the

cavity is always less than the  maximum value: .

    For this reason, in accelerator literature,  values of gap 

voltage and shunt impedance are defined and often us

ginstantaneous eE d

effective

2

2

2

2
2

sin

ed:

                                                                       (13)

where  is the

transit time factor. 

eff

eff

eff
loss

g

g

V

P

V MV

R M R

M





=



= =


=

Parameters of an Open-End Cavity (continued)

Fig. 3

 (transit angle)g



2

2

     If 60 kW is input into the empty cavity to excit the mode. Then, in

the steady state, all 60 kW is dissipated on the walls ( 60 kW), 

Maximum energy
Thus,   [(13)] 600 kV 

eff

eff eff

loss

loss

V

P

P

R V

=


=  =

gained by an electron
 
  

0

6

  Parameters:

500 MHz

37000

3 10  

60 kW

600 kV

0.587

eff

eff

f

Q

R

P

V

M

=

=

=  

=

=

=

Parameters of an Open-End Cavity (continued)

DORIS I cavity
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Dimensions:

60 kW

27.6 cm

z→ e              

           
coaxial line

E-field lines

An Example of Open-End Cavity : the DORIS I Cavity

Used in the NSRRC Storage Ring
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     Cavities like the one in Fig. 1 are often too complex to be examined

analytically. Instead, it can be described by an equivalent circuit, which

yields the parameters of  interest :  , , and . 

   

Q R

0

0

  Fig. 4 shows a commonly used equivalent circuit (Collin, Sec. 7.1). 

The equivalent circuit has a resistance , a resonant frequency  and

a quality factor  [  and  are derived below and also in L

R

Q Q





0

ecture 

Notes, Ch. 3, Appendix A, Eqs. (10) and (13)]. Thus, what we need are

the proper values of  , , and  to give the equivalent circuit the same 

,  , and  as those of  the cavity. This is done b

R C L

R Q elow. 50

Fig. 1 Fig. 4

=
     

  Li

Equivalent Circuit for an Open-End Cavity



21
4

     For the circuit in Fig. 4, let ,  be the average E- and B-field

energies,  be the power dissipation, and  be the quality factor.

                                     

     Then,   

loss

me

e

W W

P Q

W C v=

2

2

2

2
1 1
4 4

1
2

(

                           (14)

                                                 (15)

                                                                  (16)

f

L

loss

m

loss

W e m

L

R

W W

P

v

v

W L i

P

Q



  +

= =

=

= =

2

)

1
2

(17)

     For the cavity, we have /  [(2)]. Comparing this with

(16),  of the equivalent circuit is to be specified at the same val

                                             

loss

loss
P

R V P

R











=

ue.
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Equivalent Circuit for an Open Cavity (continued)

,  where 

is the impedance of .

[Lecture Notes, Ch. 3,

Appendix A, Eq. (14)].

Lv j Li j L

L

 =

Fig. 1

=
     

  Li

Fig. 4 



2 2

2

2

2

0

1 1 1
4 4 4

1
2

( )

 [(14)];       [(15)]
     Rewrite  

  [(16)];       (17)]

     At , we have  [Lecture Notes, Ch. 3, Appendix A,

Eq. (12)]. Thu

         [

L

loss

m

m

loss

e

e

L

R
e mW W

P

v

v

W C v W L i

P Q

W W





 

+


= = =


 = =


= =

0

0

0
0

2
0

1

2

(14), (15)    (18)

s, 
(14), (16), (18)       (19)

     Thus, using ,  of the cavity, we get ,   from (18), (19). 

     With , ,  and

                                

loss

eW
P

LC

R
L

Q RC

Q L C

R L










  =



 = = =


0

  specified in this way, Figs. 1 and 4 have the same 

, , and . As shown next, the equivalence goes beyond this.

C

R Q 52

Equivalent Circuit for an Open Cavity (continued)

Fig. 1

=
     

  Li

Fig. 4 
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)

0

0
2

0 0

0

2

2
2
0

2
0

2

21 (2

4

( ) [ ]

( ) [1 (2 ) ]

4
                                 (45)

     Rewrite 

                                  (49)

 (i.
     Under the conditions:  

ext

ext

ext L

L

V

P
P

R R

R R

R R Q

R

Q
V







 

+



+



+

+ +









=

=

=

0
2 22 2

e. 0)                          (50a)

and                                      (50b)

(45) and (49) . Either or 

implies that the incident power has all entered into the ca

extR R

V V P P V V P P



+ +

 =


=

 =   = =  =

vity (i.e. a 

perfect match). This is called critical coupling.

Fig. 14. Exciting a cavity

0Z

       

a

0R L C

 a

          

cavitycoaxial line

V +

 V −
     

 
c

ext

Z

R=

Critical Coupling, Undercoupling, and Overcoupling
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0 0 0 0

0

0

     Eq. (36) gives   and . Thus, one of the

critical coupling conditions,  [(50b)], can also be expressed 

as                i.e.  [External ] [Unloaded ]           

ext ext

ext

ext

Q R C Q R C

R R

Q Q Q Q

 = =

=

= =

0

      (51)

     A coupling coefficient ( ) is often used to characterize the degree

of matching with a cavity. It is defined as                        (52)

<1, the cavity is said to be undercoup

ext

Q

Q









led to the feeding line

1,  the cavity is said to be critically coupled to the feeding line

1,  the cavity is said to be overcoupled to the feeding line








=
 

Fig. 14. Exciting a cavity
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a

0R L C

 a

          

cavitycoaxial line

V +

 V −
     

 
c

ext

Z

R=

Critical coupling, Undercoupling, and Overcoupling (continued)



Critical coupling, Undercoupling, and Overcoupling (continued)

: Fig. 17 shows 2 coaxial feeding line with a probe or a

loop at the end. What parameters are being changed when we "tune"

the coupling strength by varying the probe length or loop orientat

Questi     on

0

0 0

0 0 0

0

0

2 2

2 2

ion?

     Rewrite   [(34)];   [(35)];   [(32)]

     Let's assume the same field energy ( ) and . Then,  (Ohmic 

loss) and  ( / ) are the same. Also,  (  

ext

f

f

ext c

ext

f

extext

V V W

PR P
P R Q

W P

Q W P R R







= = =

=

0

of the coaxial

line) is fixed. When the probe or loop is tuned, the (local) gap voltage

 can vary a lot. Hence, by (34) and (35),  and  can be changed

a lot. As a result, by (32),  can also be
ext

ext

V P R

Q

0 0

 changed a lot. This makes 

it possible to achieve critical coupling:  ( ).ext extQ Q R R=  =

Fig. 17

Probe Loop

c extZ R=

V V
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Critical coupling, Undercoupling, and Overcoupling (continued)

     :

     In feeding a cavity, reflections can cause interferences with other 

signals. In the case of high input power (e.g. 60 kW for the NSRRC

cavity), r

Significance and Example of Critical Coupling

eflections can also waste energy and, worse, damage the 

power generator. Thus, the coupling structure needs to be tuned to

minimize the reflection.

     For the NRSSC cavity, loop coupling is used (Fig.

0

 18). Critical 

coupling (i.e. no reflection) can be achieved by rotating the coupling

loop to vary  until  [(51)].ext extQ Q Q=

Fig. 18

Loop

NSRRC cavity

Port for
loop coupling
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V gap 
voltage

c extZ R=

Fig. 13 

P P
− +



Critical coupling, Undercoupling, and Overcoupling (continued)

      :

     In Fig. 13, there are two sources for : (1) Reflection of  at 

the port; and (2) Energy leakage from the cavity to the coaxial line.

How can there b

P P− +

A Physical Picture of Critical Coupling

o

e no  under critical coupling? The reason is that

there are  sources for . When the critical

coupling conditions are met, the fields of the 

two sources are equal in amplitude, but 180  

out of pha

P

two P

−

−

2

se. Hence, they cancel exactly (no ).

     From another point of view, if the gap

voltage is  and there is no . Then, at the

gap,  reduces to , which 

implies a power of /(2 ) is fed ext

P

V V

V V V V V

V R

−

−

− + ++ = =

2 2

0
0

2 2

into the cavity. Then, in order to

maintain a steady state, this power must equal the power dissipated in

the cavity:  or  (the crirical coupling condition).
ext

V V

extR R
R R= =



Cavity application – 3GHz chopper of TLS LINAC 

Illustration of the 3GHz chopper operating at 

TM110 mode is shown in figure-4. The applied rf 

magnetic field, shown in the figure, compensates 

the DC-biased magnetic field at 3GHz and chops 

the DC electron pulse into 3GHz bunch train.

58

Chopper cavity (a) Longitudinal 

electric and (b) transverse magnetic 

field distribution of the TM110 mode.



Cavity application – SLED
SLED = SLAC Energy Doubler
•A method of achieving RF pulse-compression
through the use of high-Q resonant cavities.
•The cavities store klystron energy during a
large fraction of each pulse and then discharge
this energy rapidly into the accelerator during
the remainder of the pulse.

SLED output power waveform

59Z. D. Farkas, et al, HEACC74, 1974
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Cavity application – DAWON(KOREA) SLED

https://doi.org/10.1016/j.nima.2016.11.005

https://doi.org/10.1016/j.nima.2016.11.005
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Cavity application – SLED Flat Pulse Operation

doi:10.18429/JACoW-LINAC2022-MOPOJO19

Diamond Light Source



Cavity application – SLED-II BOC (Barrel Open Cavity)

Single cavity, no power hybrid

C-band BOC of Swiss FEL

62R. Zennaro, et al. IPAC 2013, WEPFI059 .



Cavity application – SLED-III SCPC (SPHERICAL PULSE 

COMPRESSOR)

63J.W.Wang, et al. PRAB 20, 110401, 2017.

Elettra SCPS Test Results
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Cavity application – NSRRC Photocathode RF Gun

Parameter Value

Frequency 2.99822 GHz (@55C)

Q0 ~8000

Coupling coefficient 0.7

Peak field at the cathode 50 MV/m

Beam energy after gun 2.5 MeV

UV laser pulse duration 

(FWHM)
3 ps

Cathode quantum 

efficiency
~1 x 10-5 Forward and reverse power of the Gun  

Cu cathode



Conventional                   Relativistic
Microwave Electronics           Electronics

Examples ,    TWT, Klystron, Magnetron         ECM, FEL

Frequency                 < 1011 Hz                     1010 Hz – X-ray

Power < 106 W                        104 W – 1010 W

Electron Energy        < 105 V                         103 V – 1010 V

Beam Current            < 102 A                           1 A – 106 A

Basic                    Circuit equations           Maxwell equations

Equations          + Fluid equations          + Relativistic particle eqs.                

     Vacuum electronics addresses electron-wave interactions in a 

vacuum, usually for radiation generation. It involves a much broader

frequency range than the microwave band (e.g. X-ray free electron 

laser, FEL). This chapter covers only the microwave regime.

Vacuum Electronics

65



     The figure above compares the power capabilities of lasers and

microwave tubes. Lasers are quantum mechanical devices, while the

conventional microwave tubes and ECM (a new type of microwave

tubes) are vacuum electronic devices. The term "microwave tube"

refers to microwave generators requirng a vacuum environment for

the electron-wave interaction

One photon per 
excitation,
Large interaction 
space

Multiple photon per 
electron, 
Large interaction space

Multiple photon per 
excitation,
Interaction space
~ wavelength

66

Power Capabilities of Laser and Microwave Tubes



R. J. TREW, “SiC and GaN transistors - is there one winner for microwave power applications? ”, Proceedings of the 

IEEE , Vol. 9, Issue: 6, 2002, pp. 1032-1047.

Introduction of Microwave Tubes

67



     Microwave tubes (or simply "tubes") are the main subject of this 

chapter. They have a long histroy of research and are still being

enriched by new physical insights and the discovery of novel types

of tubes. Microwave tubes are widely used in our daily life. 

     Tubes are bulkier than solid state microwave devices, but they

generate much higher power. The basic types of microwave tubes

are listed below (and will be discussed later). 

: matured in the 1960s

1. Traveling Wave Tube (TWT)

        Cornerstones: 2. Klystron

3. Magnetron

     Conventional Microwave Tubes

     Relativistic Microwave T







: 1970s-present

        Cornerstone: Gyrotron [a device based on a relativistic effect

                             called the electron cyclotron maser (ECM)]

ubes

68

An Overview of Microwave Tubes



Amplifier Oscillator Interaction Process

Gridded Tube Gridded Tube Grid control of the beam current

Klystron 1.Two Cavity Oscillator

2.Extended Interaction Oscillator

3.Reflex Klystron

Velocity Modulation with resonant 

cavities

1.Helix TWT

2.Coupled Cavity TWT 

Backward wave Oscillator Velocity Modulation with traveling 

wave structure

Crossed Field Amplifier 1.Carcinotron(M-type BWO)

2.Fixed Frequency Magnetron

3.Coaxial Magnetron

4.Voltage Tuned Magnetron

Crossed Field

Gyrotron Gyrotron Spiraling beam

※Linear beam tubes are called O-type devices.

※Crossed-field tubes are called M-type devices.

An Overview of Microwave Tubes
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Conventional Microwave Electronics

KlystronMagnetron

Helix TWT
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     1. A mechanism for the RF fields to  a DC electron beam into 

         an AC electron beam (Microwave tubes are distinguished by their 

         bunching mechanisms).
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Conditions  Required for the Generation of Coherent 

Radiation - Common to All Types of Microwave Tubes
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Waves in Periodic Structures

ω-β Diagram of slow wave structure

weak periodic loading strong periodic loading

ω-β Diagram of slow wave structure
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Klystrons

The first klystron invented by 

the Varian brothers at Stanford

The SLAC S-band klystronThe Stanford “Model A” klystron
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: 

velocity modulation electron bunching density
in buncher cavity in the drift space modulation

Principle of  the klystron amplifier
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A two-cavity klystron amplifier.

  See Ch. 7, Sec. 5 for cavity excitation by external coupling.

See Ch. 7, Sec. 3 for
cavity excitation by 
AC beam current.

j t
beam acdc

I I eI


= +
DC

Design Principle of the Klystron



Design Principle of the Klystron

Elements of a Three-Cavity Klystron Amplifier Plasma Frequency

RF Current Growth in Beam in a 

Three-Cavity Klystron Amplifier
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DC beam under a HF electric field



Klystron Assembly

Interaction Circuit

depressed collector

magnetic 

focusing system

output windowinput window cavity assembly

electron gun

buncher cavities

output cavityinput cavity
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(1) Synchronously tuning (for maximum gain)

All cavities are tuned to the same frequency, which is also referred to as gain tuning. Generally, each 

cavity provides a gain of about 15-20 dB, so a klystron amplifier with four resonant cavities is expected 

to offer a total gain of over 50 dB.

(2) Efficiency tuning (for maximum efficiency)

        The penultimate cavity ( i.e. next-to-the last cavity ) is tuned upward in frequency ( making it 

inductive at the operating frequency )。If the resonant frequency of the penultimate cavity is increased, 

the bandwidth will be widened. Although the gain will decrease by about 10 dB, efficiency tuning will 

enhance the bunching efficiency of the electron beam, resulting in a 15-20% increase in power output.

(3) Broadband tuning (for wide bandwidth )

       A klystron is typically a narrow-bandwidth microwave source. Usually, stagger tuning is employed, 

sacrificing high gain to achieve a wider bunching bandwidth. Stagger tuning involves adjusting the 

resonant frequencies of different cavities above or below the center frequency to increase the overall 

bandwidth.

Tuning of the Multi-cavity klystron
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Thales TH2100 Klystron
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Canon E37310A Pulsed Klystron
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Design Principle of the Klystron

Transfer Curve of rf amplifier
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Small-Signal Analysis Big-Signal Analysis

82



Principle of Beam-Wave Interaction
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Principle of beam-wave interaction
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Simulation of the Klystron
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𝑖 𝑙 =
𝑉0

𝑍0 + 𝑅𝑙

 1 − 𝑈 𝑡 − 2𝛿 −
𝑍0 − 𝑅𝑙

𝑍0 + 𝑅𝑙

 𝑈 𝑡 − 2𝛿 − 𝑈 𝑡 − 4𝛿  

+  
𝑍0 − 𝑅𝑙

𝑍0 + 𝑅𝑙

 
2

 𝑈 𝑡 − 4𝛿 − 𝑈 𝑡 − 6𝛿  − ⋯  

U ∆𝑡 = 1 𝑓𝑜𝑟 ∆𝑡 > 0 

U ∆𝑡 = 0 𝑓𝑜𝑟 ∆𝑡 < 0 

∆t =  𝑡 − 𝑛𝛿 , 𝑛 = 2,4,6,⋯ 
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Guillemin E type   

pulse forming networks 

L LL

Line-type Modulator of Klystron

L
 R = 

C
impedance

G. N. Glasoe and J. V. Lebacqz, Pules Generators. (New York and  London, 1948)



Thales TH2100 Canon E37310A

Frequency (MHz) 2998.5  1 2.997.5~2.999.5

Peak Cathode Voltage (kV) 300 (276) 295 (291)

Peak Inverse Beam Voltage (kV) 70 80

Peak Cathode Current (A) 310 (281) 345 (315)

Peak Drive Power (W) 400 1000

Peak RF Output Power (MW) 37.5 (35.1) 36 (35.6)

Pulse Width (duration) (s) 7 (75%, 6.5 s) 7.5 (75%)

Pulse Width (duration, RF) (s) 4.5  0.5 4.5 (-3 dB)

Pulse Repetition Rate (Hz) 100 120

Gain (dB) (55.1) (48)

Efficiency  (%) (45.2) (39)

Oil Tank Turn Ratio TLS : 20,     TPS : 13 New Oil Tank : 14

Klystron Impedance () TLS : 2.419 (2.46), TPS : 5.7 3.8 (4.11)

Focusing magnet (solenoid/set) 3 6

Charging Voltage (kV) 46.2 (42.5) 39.3 (38.8)

※ The black value is the official specification.

※ (……) The FAT data are in red brackets. THALES : No. 2100-018, CANON : S/N 21E002A

HBI Modulator PFN Impedance : 1.14 ~ 4.123 

(each capacitor set : 0.1 F, each inductor (tuning range): 130 nH ~ 1700 nH)

TPS PPT Modulator PFN Impedance : 5.5 ~ 6 

(each capacitor set : 0.025 F, each inductor : 800 nH )

Canon E37310A klystronThales TH2100 klystron
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Thales and Canon Klystron comparison



Thales TH2100 Klystron : 

#210-113, Vcatode = 272 kV, Icathode = 286.2 A, Impedance = 950 

 (secondary side)

⚫ Pulse transformer turns ratio 1:13 → Primary side 

impedance RT13 = 5.62 

Canon Klystron E37310A Impedance :

SN21E002A, Vcatode = 291 kV, Icathode = 315A, Impedance = 

923.8  (secondary side)

⚫ Pulse transformer turns ratio 1:14 → Primary side 

impedance RC14 = 4.7 

⚫ Pulse transformer turns ratio 1:15 → Primary side 

impedance RC15 = 4.1 

⚫ Pulse transformer turns ratio 1:18 → Primary side 

impedance RC18 = 2.85 

PPT (RI) Modulator (18 sections): 

 
𝐿0 = 800 𝑛𝐻
𝐶 = 25 𝑛𝐹

→ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑖𝑑𝑒 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒: 𝑅𝑃0 = 5.66 Ω

 
𝐿0 = 552 𝑛𝐻
𝐶 = 25 𝑛𝐹

→ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑖𝑑𝑒 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒: 𝑅𝑃1 = 4.7 Ω

 
𝐿1 = 420 𝑛𝐻
𝐶 = 25 𝑛𝐹

→ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑖𝑑𝑒 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒: 𝑅𝑃2 = 4.1 Ω

 
𝐿2 = 203 𝑛𝐻
𝐶 = 25 𝑛𝐹

→ 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝑠𝑖𝑑𝑒 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒: 𝑅𝑃3 = 2.85 Ω

Charging 43 kV

1.
𝑅𝑃0

𝑅𝑃0+𝑅𝑇13
=

5.66

5.66+5.62
= 0.5 ⟹ 𝑉𝑚 ∶ 𝑉𝑘 = 1 ∶ 1 ⟹ 1𝑠𝑡 21.5 𝑘𝑉 ⟹ 2𝑛𝑑 279.5 𝑘𝑉

2.
𝑅𝑃0

𝑅𝑃0+𝑅𝐶14
=

5.66

5.66+4.7
= 0.55 ⟹ 𝑉𝑚 ∶ 𝑉𝑘 = 1 ∶ 0.83 ⟹ 1𝑠𝑡 19.5 𝑘𝑉 ⟹ 2𝑛𝑑 273 𝑘𝑉

3.
𝑅𝑃0

𝑅𝑃0+𝑅𝐶15
=

5.66

5.66+4.1
= 0.58 ⟹ 𝑉𝑚 ∶ 𝑉𝑘 = 1 ∶ 0.72 ⟹ 1𝑠𝑡 18.0 𝑘𝑉 ⟹ 2𝑛𝑑 270 𝑘𝑉

4.
𝑅𝑃0

𝑅𝑃0+𝑅𝐶18
=

5.66

5.66+2.85
= 0.67 ⟹ 𝑉𝑚 ∶ 𝑉𝑘 = 1 ∶ 0.5 ⟹ 1𝑠𝑡 14.3 𝑘𝑉 ⟹ 2𝑛𝑑 257 𝑘𝑉

5.
𝑅𝑃1

𝑅𝑃1+𝑅𝐶18
=

4.7

4.7+2.85
= 0.62 ⟹ 𝑉𝑚 ∶ 𝑉𝑘 = 1 ∶ 0.61 ⟹ 1𝑠𝑡 16.3 𝑘𝑉 ⟹ 2𝑛𝑑 293 𝑘𝑉

TPS LINAC Klystron Modulator analysis
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Thales (1:13)

Canon (1:14)

TPS Modulator PFN Analysis (matching design)

Canon (1:18)
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Matching Analysis
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TPS LINAC Klystron Modulator analysis

Mismatching Analysis
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Modification of the TLS Pulse RF System



Thank You !
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