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Lecture Outline
Time

• Introduction and electron motions in an 
undulator

14:00-15:00

• Low-gain and high-gain FEL Theory 15:00-16:00

• Break

• High-gain FEL Analysis and SASE 16:15-17:15

• Seeded FELs 17:15-18:15

Selected references:

• P. Schmuser, M. Dohlus, and J. Rossbach, Free Electron Lasers in the UV and X‐Ray Regime, Springer, 2014

• K‐J. Kim, Z. Huang, R. Lindberg, Synchrotron Radiation and Free-Electron Lasers, Cambridge University Press, 2017

• 赵振堂等， 先进X射线光源加速器原理与关键技术，上海交通大学出版社，2017
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Introduction
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XFEL: one of the most powerful tools for science

Extremely Bright, Ultrafast, Quasi-Fully Coherence and Wavelength continuous tunability
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FEL operation modes
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Major Photon Science Centers in the World

Germany
1999
2008

Italy
1994
2007

USA
1995
2003

Switzerland
2001
2010

South Korea
1995
2012

Japan
1997
2006

China
2009
2014
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Basic FEL principle

Electron beam Light wave
Interaction

Energy exchangeMotion equation 
in undulator

Electromagnetic 
field

Maxwell equation

Stable energy exchange induces resonance condition

• Electric field evolution
• Energy evolution
• Particle distribution evolution
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Essential Concepts
• Electron beam

– Electron energy, relativistic energy factor, relativistic velocity

– Beam envelope, Twiss parameters, emittance 

– Phase space: transverse and longitudinal

– Beam transport and optics

• Light

– Photons: photon energy, wavelength, frequency, wave number

– Transverse coherence (Diffraction Limit), longitudinal coherence (time-frequency domain, Fourier transform 

limited)

– Bunching and intensity enhancement 
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Bunching and intensity enhancement 
• Average electric field intensity generated by electron beam:

• Divide the double sum into the piece where the particles are identical and the remaining terms:

Incoherent 

radiation
Coherent FEL emission
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Undulator Radiation Brightness
• Brightness definition：

– B=(spectral flux)÷(transverse phase space area)

• Undulator Radiation Brightness：

10
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Electron motions in an undulator
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Electron trajectory in a planar undulator

Magnetic field in a planar undulator

On-axis y=0:

Lorentz force：

1st order solution:

Transverse motion equations

Coupled equations：

Undulator parameter K
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Electron trajectory in a planar undulator

8
In beam frame
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Undulator radiation resonant wavelength

Works for harmonics h=1/h

UVSOR, Okazaki, Japan
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Radiation spectrum

𝑇 = Τ𝑁𝑢𝜆𝑢 𝐶
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Radiation angular divergence

Observing the intrinsic bandwidth to obtain the natural 

divergence of undulator radiation

Defining rms angular divergence

1）Φ~1/γ，large bandwidth (bending)

2）Φ<<1/γ，observe intrinsic bandwidth 
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Higher harmonics
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Interaction and energy exchange
• Energy exchange: coupling between electron transverse velocity and transverse electric field; 

continuous energy transfer.
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Interaction and energy exchange
• Energy transfer（Power）

F∙v > 0, inverse FEL                        F∙v < 0, FEL

19
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Interaction and energy exchange
• The time derivative of the electron energy

The time derivative of the particle phase: the ponderomotive phase
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Interaction and energy exchange

This is resonant condition if 𝜆 = 𝜆1, and 𝛾 = 𝛾𝑟

Since γ a function of time, we introduce a normalized energy variable 

Due to the interaction between electrons and radiation fields, both the electron energy γ and the 

ponderomotive phase θ undergo evolution. In the low gain FEL theory, the amplitude of the electric 

field can be treated as a constant in a short undulator due to its slow growth.
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Interaction and energy exchange
The coupled phase-energy equations

(j for each individual electron)

It is convenient to use z as the independent variable z ~ ct
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FEL Pendulum equation



ሶ𝜃 =
𝜕𝐻

𝜕𝜂
= 2𝑘𝑢𝜂, ሶ𝜂 = −

𝜕𝐻

𝜕𝜃
= −

𝜖

2𝑘𝑢𝐿𝑢
2 sin 𝜃

The Hamiltonian form of the low-gain FEL:

The trajectories in the (θ, η) phase space are the curves of a constant H with the separatrices joining 

the two unstable points at (θ=±𝜋, η=0)

Approximately written as a 2nd order equation

The natural oscillation frequency is given by

with period

23

FEL bucket
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Low gain FEL theory
(Small-signal gain)
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Low-gain regime

Recall the phase & energy equation 

We will solve the pendulum equations in the low-gain regime where the

amplification in a single-pass of the undulator is small, so that ε ≈ constant.
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Low-gain regime
Inserting the expansion into the equations of motion, yields

Then, at 0-th order, we have

with (φ0, η0) defined to be the initial particle coordinates in phase space.

At lowest order the particles move in straight lines with constant velocity.

3 phase equations
3 energy equations
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Low-gain regime
The interaction with the field comes in with the first-order equations

Putting the 0-th order solutions into above equation, and solving for η1, we have

Note that the average of the first-order energy deviation over the initial

electron phases vanishes, i.e., <η1>φ0 = 0. Thus, there is no energy exchange

between the particles and field at this order. There is, however, energy

modulation, since
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Low-gain regime
Up to now, we view the modulation in η as a precursor to FEL gain, however a variety of longitudinal

phase space manipulation techniques take advantage of this phenomenon by employing an optical laser

as the driving EM field.

The FEL gain appears at second order in ε when the energy modulation evolves into a density

modulation that can radiate coherently. First, we solve for θ1
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Low-gain regime

Recall that,
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Low-gain regime: gain function

Madey's theorem
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Low-gain regime: FEL gain

Radiation gain

Radiation loss

x=1.3,  g(x)=0.54

FEL Gain maximum：

The rms width of the gain curve is of order unity 

around its maximum, which translates to a deviation 

in beam energy:

And the optimal initial energy offset:

Using the resonance condition, the frequency width 

of the gain curve is
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Low-gain regime: Saturation

Numerical illustrations of longitudinal phase space at the

beginning (a), middle (b), and end (c) of the undulator for a

saturated FEL oscillator. The dashed lines show the

separatrix of the bucket, while the beam is initially centered

at the optimal energy for gain defined by kuLuη ≈ 1.3

Maximum energy exchange will occur at particle 

motion from the top to bottom of the phase space:

The efficiency of an FEL oscillator：

𝜂𝑚𝑎𝑥 ≈
1

2𝑁𝑢

The electron contribution to the optical energy:

The ideal output power for FEL oscillator can be 

estimated:

Δ𝑃 ≈
1

2𝑁𝑢
𝑃𝑏𝑒𝑎𝑚

Note of FELO: low-gain saturation              cavity saturation  
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High gain FEL theory
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High-gain regime
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1D Maxwell Equation
• 1D Maxwell equation for the transverse electric field

• Transverse current density

• Use slowly varying phase and amplitude approximation 

• Final Maxwell equation 
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FEL equations
➢ Change the field equation variables from (t , z) to ( , z)

➢ We obtain

➢ And rewrite the pendulum equations in terms of the slowly varying E
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Dimensionless FEL equations
①

②

③
Set it to 1
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FEL Pierce parameter 
• To simplify the field equation, set the coefficient on its right-hand-side to unity. Thus, the 

dimensionless FEL pierce parameter must be

• At saturation, electrons are fully bunched so that |             | →1, which implies maximum radiation 

amplitude |a|→1, and translate it to                                so that the maximum field energy density

• Because                is the electron energy density, we see that ρ presents the FEL efficiency at saturation, 

and FEL saturation power ∼ ρ×(e-beam power)

IA=17 kA is Alfven current
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1D solution
• Illustrate the essentials of FEL gain by neglecting the θ dependence of the electromagnetic field. The 

1D  FEL equation are
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Three coupled first-order equations
• However, the system can be linearized in terms of three collective variables

Three coupled first-order equations: 
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Cubic equation

41
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Exponential solution

• General solution:

• Solving based on the initial conditions:

• At a short distance, the growing, decaying and oscillating modes compete with one another. 

• At a long distance, the exponentially growing mode dominates 

• Consider the case of SASE (no seed and no energy modulation)

Seeded SASE(bunched) Energy-modulation (Pre-bunched)
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High-gain FEL Analysis 
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Gain function
• Considering an energy deviation η:

• Gain function:

• Within the first two gain length, gun function 

agrees with low gain FEL theory.

• In a long undulator, power growth, energy 

deviation and gain bandwidth are different.

Red curve: high gain;    blue curve: low gain 
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FEL bandwidth
• FEL bandwidth is dominated by the FEL Pierce parameter ρ

• Considering an energy deviation η, the eigenvalue of the exponential gain  term can be expanded in a Taylor 

series

Only valid in the high gain regime.
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High gain FEL saturation
• The exponential growth cannot continue indefinitely because the beam energy decreases due to the 

energy loss by radiation and the modulated current density  ǁ𝑗1becomes eventually comparable in 

magnitude to the DC current density 𝑗0.

• We assume full modulation, i.e. ǁ𝑗1 = 𝑗0 The major part of the intensity is generated in the last 

section of the exponential regime. The field amplitude at saturation is approximately given by the 

slope of the field gain curve, multiplied with the field gain length.

• The saturation power is:

• The electron beam power is 𝑃𝑏𝑒𝑎𝑚 = Τ𝛾𝑠𝑚𝑒𝑐
2𝐼0 𝑒 = 𝐸0 𝐼0,  and one can estimates the FEL power at 

saturation 
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FEL gain curve
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Phase space evolution
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Self-Amplified Spontaneous Emission
(SASE)

49
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What is SASE ?

SASE was proposed in 1980s and experimentally demonstrated at DESY TTF in 2001 at 109nm.

SASE-based hard x-ray FEL facilities all over the world.

SASE eliminates an optical cavity and starts from shot noise, resulting in the lack of longitudinal

coherence.

… .. .  ..

z

SASE

electron arrival time t is random 

➔ spontaneous emission

➔ amplified by FEL interaction

➔ quasi-coherent x-rays

50
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Qualitative description
• In the high gain regime, we use the radiation intensity in the exponential growth regime

• The bunching factor at the undulator entrance b(0) derives from the initial shot noise of the beam, 

which is subsequently amplified by the FEL process. This input noise turns out to be approximately 

given by the spontaneous undulator radiation generated in the first gain length of the undulator. 

• Slippage leads to coherence length as well as spiky structure. Coherence length is usually constructed 

as slippage over 2 gain length and increases depending on the z position in the undulator 

Electrons number in a coherence length 
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Statistical fluctuation
• Due to noise start-up, SASE is a chaotic light temporally  with ML coherent modes (ML spikes in 

intensity profile)

• Usually bunch length is much larger than the coherence length, and the longitudinal phase space is ML

larger than FT limit.

• Integrated energy fluctuation

• Singe spike intensity fluctuates 100%

• ML is NOT a constant, decreases due to increasing coherence in the exponential growth, and increases 

due to decreasing coherence after saturation.

1

L

W

W M


=

coh

bunch length

coherence length

b
L

T
M


 =
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Typical SASE spectrum
• Spectral properties are similar to temporal domain, except that everything is inverted

Bandwidth

~ 2 

spike width ~

bcT



Bunch length Spike bandwidth

Coherence length SASE bandwidth
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FEL startup from e-beam noise

54
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Transverse coherence
Z=25m Z=37.5m Z=50m

Z=62.5m Z=75m Z=87.5m

Single mode dominates ➔ close to 100% transverse coherence
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SASE 1D Summary

56



OCPA2025, Khao Yai, Nakhon Ratchasima, Thailand, 07.29-08.07, 2025

Three-dimensional effects

57
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Ming-Xie’s 3D fitting formula
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Fully coherent FEL

59
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Towards fully coherence

Fully coherent 
FEL sources

SASE-FELs

SASE & its advances

✓ pSASE (Purified SASE)

✓ iSASE (Improved SASE)

✓HB-SASE

✓Mode locked SASE

Seeding schemes

✓HGHG, EEHG, EEHC…

✓SXRSS, HXRSS

✓XFELO

SASE is inherently chaotic and noisy
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Seedings schemes

External-seeding

✓ HGHG, EEHG, EEHC…

✓ FERMI、DCLS、SXFEL、…

✓ UV to soft X-Ray 

✓ Complex system

Cavity based X-ray FEL

✓ XFELO ( and RAFEL)

✓ R&D (first demonstrated in May, 2025)

✓ Simple system and stable output

✓ Depend on cavity

✓ Ideal fully coherent hard X-ray

Self-seeding

✓ SXRSS, HXRSS

✓ LCLS、PAL-XFEL、EXFEL、
SACLA、SHINE…

✓ Soft and Hard X-ray

✓ Stability limited by SASE

Without seed laserWith seed laser 
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Self-seeding
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Hard and soft x-ray self-seeding

63
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Hard x-ray self-seeding

Geloni, Kocharyan, Saldin (DESY)

1 GW 25 GW

FEL spectrum 
after diamond

Power dist. 
after diamond

Monochromatic 
seed power

Wide-band 
power

6 m  20 fs

5 MW

Self-seeding of 

1mm electron 

bunch at 0.15nm

yields 10-4 BW 

with low charge 

mode

10−5

64

Why is it FBD, other than BD ?
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How does HXRSS generate wake pulses

65
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Bragg spectral response function
• Monochromator: BD vs FBD
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(Reflected) Bragg Diffraction

67



OCPA2025, Khao Yai, Nakhon Ratchasima, Thailand, 07.29-08.07, 2025

Forward Bragg Diffraction
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Monochromatic wake pulses
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Pathlength Delay & Offset in a Chicane
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HXRSS Spectral Brightness Enhancement
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Soft x-ray self-seeding

• Soft x-ray region

• Diffraction Grating: Resolution determines bandwidth

• Optical system: focusing and optical path return 

• Chicane: smear bunching, delay, offset

• Complex system and unstable
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Cavity based XFEL

73
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Cavity based XFEL
• Originally, cavity-based FEL is used for FELO (low 

gain) in the range from infrared to THz FEL.

• Recently, due to the development of crystallography, 

CBXFEL focus on X-ray regime.

• Key: Bragg diffraction.

• Cavity-based FELs include XFEL oscillators 

(XFELOs) and X-ray regenerative amplifier FELs 

(RAFELs).

• XFELO: Low gain regime, short undulator, low-

quality electron beam, many passes

• RAFEL: High gain regime, long undulator, high-

quality electron beam, a few passes

• In fact, we usually refer to them as XFELO or 

CBXFEL collectively.
XFELO demonstrated at European-XFEL in May, 2025
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X-ray FEL Oscillators

75
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Some detail about FELO

76

Pass 1: spontaneous 

emission

Pass i:

Pass m’s 

intensity:

Pass i’s net gain:

Pass i’s initial power intensity

Pass i’s end power intensity

Pass i’s power gain

Pass i’s cavity loss         
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Some detail about FELO

• Low gain: undulator length ＜ 3 gain length

• Initial gain ~ small signal gain 𝑔𝑠𝑠
• As the electric field is amplified, the FEL gain gradually decreases until the balance 

between the gain and cavity loss, i.e. saturation

• At saturation, the net gain is zero:

• For the oscillator: 
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Some detail about FELO
• At saturation, the single pass gain equals cavity loss

• The condition for the above equal sign to hold is that saturation power of the balance state is equal 

to small signal saturation power.

• And the total passes: 

• Saturation power in the cavity:

• Assuming out-coupling power = cavity loss, so 
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X-ray RAFEL with Bragg Reflectors

79
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SASE and CBXFEL

SASE XRAFEL XFELO

Peak Power ~10 GW ~50 GW ~100 MW

Average Power 100 W (at ~ 1 MHz) 10 W (at ~ 10 kHz) 20 W (at ~ 1 MHz)

Spectral Bandwidth ~10 eV ~0.1 eV ~1 meV

Pulse Length ~1-100 fs ~20 fs ~1 ps

Stability Poor Excellent Excellent

Poor Excellent Excellent Excellent

Transverse Mode Defined by the gain guiding Defined by the gain guiding Defined by the optical cavity
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External seedings: HGHG and EEHG 

81
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Principle of HGHG FEL

82
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HGHG: energy modulation from seed laser
• According to the low gain FEL theory, a seed laser interacts with an electron beam in a short undulator 

and generates energy modulation. Reviewing perturbation analysis, the 1st order is the modulation 

term 

• The energy modulation amplitude introduced by seed laser in the modulator

• 𝑃𝑟𝑒𝑙 = Τ𝑚𝑐3 𝑟𝑒 ≈ 8.7 GW，𝜎𝑟
2 = 𝜆𝑙 Τ𝑍𝑅 4𝜋，𝑍𝑅~ Τ𝐿𝑢 𝜋

∆𝜂 =
𝑒𝐸0𝐾 𝐽𝐽

2𝛾𝑟
2𝑚𝑐2

𝐿𝑢 =
𝐾 𝐽𝐽

𝛾𝑟
2

𝐿𝑢
2

𝜎𝑟
2

𝑒2

4𝜋𝜖0𝑚𝑐
2

𝑃

𝑚𝑐3

=
𝐾 𝐽𝐽

𝛾𝑟
2

𝐿𝑢
𝜎𝑟

𝑃

𝑃𝑟𝑒𝑙
→

2𝜋𝐾 𝐽𝐽

𝛾𝑟
2

𝐿𝑢
𝜆𝑙

𝑃

𝑃𝑟𝑒𝑙
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HGHG: Initial phase space
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HGHG: energy and density modulations
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HGHG： bunching factor

{𝐴𝐵}max≈ 1.2

Optimal solution for maximal bunching:
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Principle of EEHG FEL

G. Stupakov, PRL (2009)
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EEHG: phase space
• First energy modulation:

• After first chicane:

• Second energy modulation

• After second chicane
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EEHG: bunching factor

   

bmax =
0.39

m1/ 3

Optimal solution:
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Seeded FEL: FEL performances
• During the first two gain length, coherent harmonic generation (CHG) without high gain:

• 𝑍0 = 377 Ω is vacuum impedance and 𝐼𝑝 is peak current. 

• After the first two gain length, high gain regime. 

• When calculating the 3D gain length, it is necessary to consider the energy spread added by 

modulation. The slice energy spread and the saturation power can be estimated as:

• And the saturation length is 
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HGHG and EEHG bunching factors
• HGHG produces narrow-

linewidth radiation at the 

harmonic of the seed laser. 

HGHG is sensitive to energy 

spread as well as phase and 

frequency changes in the 

laser.

• EEHG is an attractive 

technique to the generation of 

ultra-high harmonic from the 

laser-driven harmonic FEL.
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XFEL operations worldwide

FLASH SASE (EEHG)

LCLS (+II+HE): SASE, self-seeding, (EEHG, XFELO)

SACLA SASE, self-seeding

FERMI HGHG, HGHG cascading (EEHG, EEHC)

PAL-XFEL SASE, self-seeding

European-XFEL SASE, self-seeding (XFELO)

Swiss-FEL SASE, self-seeding (EEHG)

SXFEL SASE, HGHG, EEHG, EEHC, …

SHINE SASE, self-seeding, EEHG, EEHC, …

S3FEL EEHG, EEHC, …

… …
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Homework
• Derive the electron motion equations and resonance condition in an undulator.

• Derive the bunching factor of HGHG.

• Assume an FEL facility with 4 GeV beam energy, 1 kA peak current, and 0.5 mm*mrad normalized

slice emittance. The average beta function is 10 m in the undulator with 40 mm undulator period

length. Considering 3 nm SASE generation, please calculate undulator parameter, Pierce parameter,

gain length, saturation length, and saturation power under 1D theoretical condition.
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Backup materials
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Focusing in long undulators
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Natural focusing in an undulator
• The undulator field is only valid very near the y = 0 plane in 1D theory because it does not satisfy the 

vacuum Maxwell equations in 3D. An exact solution of Maxwell’s equations describing a planar 

undulator with flat poles is

• Thus, we can find that

The harmonic oscillator 

equation
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FODO lattice in undulators
• Strong focusing + natural focusing

SHINE SXFEL

SHINE:

QF=2.3T
QD=-2.3T

SXFEL:

QF=0.6T
QD=0.6T

No impact of natural focusing Heavy impact of natural focusing
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HGHG&EEHG advances
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SM&DE-HGHG/EEHG
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x
y

x
y

降低对束流能量
抖动的要求

Transverse Gradient Undulator
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Phase-merging effect

101
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Phase-merging Enhanced Harmonic 
Generation （PEHG）
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Angular dispersion enabled microbunching
ADM

斜入射模式：其他:
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